Yamidn
Answered

Makakuha ng kaugnay na sagot sa lahat ng iyong katanungan sa IDNStudy.com. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng detalyadong sagot sa lahat ng iyong mga tanong.

prove that sinx + tanx ÷ 1+secx  =   sinx 

Sagot :

Please zoom in your screen if you're having trouble reading small texts. The following equations will look small.

The equation is this:
[tex] \frac{sinx+ tanx }{1+secx } =sinx[/tex]

Recall these identities:
[tex]tanx= \frac{sinx}{cosx} [/tex]
[tex] secx= \frac{1}{cosx} [/tex]

Doing the necessary substitution, we get:
[tex] \frac{sinx+ \frac{sinx}{cosx} }{1+ \frac{1}{cosx} } =sinx[/tex]

Combining, we will have:
[tex]( \frac{sinxcosx+sinx}{cosx}) /( \frac{cosx+1}{cosx})=sinx [/tex]

When we divide, we multiply the numerator by the reciprocal of the denominator, we get:
[tex] \frac{sinxcosx+sinx}{cosx}* \frac{cosx}{cosx+1}=sinx [/tex]

We cancel cosx, then we get:
[tex] \frac{sinxcosx+sinx}{cosx+1}=sinx[/tex]

Factor sinx from the numerator,
[tex] \frac{sinx(cosx+1)}{cosx+1}=sinx[/tex]

Cancel cosx+1,
[tex]sinx=sinx[/tex]

Yay.

Hope that helps.