Tuklasin ang maliwanag na mga sagot sa iyong mga tanong sa IDNStudy.com. Ang aming komunidad ay handang magbigay ng malalim at maaasahang mga sagot, anuman ang kahirapan ng iyong mga katanungan.

2x + 5y = 4/5

6x - 5y = 5/6

solve each system of linear equation by the substitute method


Sagot :

[tex]\begin{cases}2x+5y=\frac{4}{5} \\ 6x-5y=\frac{5}{6} \end{cases}\\\\\begin{cases} 5y=-2x+\frac{4}{5} \ \ / *\frac{1}{5} \\ 6x-5y=\frac{5}{6} \end{cases}\\\\\begin{cases} y=-\frac{2}{5}x+4 \\ 6x-5y=\frac{5}{6} \end{cases}[/tex]

[tex]substitution : \\\\ 6x-5 *(-\frac{2}{5}x+\frac{4}{25})=\frac{5}{6}\\\\6x+2x- \frac{4}{5}=\frac{5}{6} \\\\8x=\frac{5}{6} +\frac{4}{5}\\\\8x=\frac{25}{30}+\frac{24}{30}[/tex]

[tex]8x=\frac{49}{30} \ \ /*\frac{1}{8}\\\\x=\frac{49}{240}\\\\\\2*\frac{49}{240}+5y=\frac{4}{5}\\\\\frac{49}{120}+5y=\frac{4}{5}[/tex]

 [tex]5y=\frac{4}{5}-\frac{49}{120} \\\\5y=\frac{96}{120}-\frac{49}{120} \\\\5y=\frac{47}{120}\ \ /*\frac{1}{5}\\\\y=\frac{47}{600} \\\\Answer : \ \begin{cases} x= \frac{49}{240}\\ y=\frac{47}{600} \end{cases}[/tex]


2x + 5y = 4/5 ---- equation 1
6x - 5y =5/6  ----equation 2
since you are to use substitution method then first thing to do is to have one equation be modified such that one variable could have a value in terms of the other..
Let's have equation 1
2x + 5y = 4/5
2x = 4/5 - 5y
[tex]x = ( \frac{4}{5} - 5y)( \frac{1}{2}) [/tex]
[tex]x = (\frac{4}{5} )( \frac{1}{2} ) - \frac{5y}{2} [/tex]
[tex]x = \frac{2}{5} - \frac{5y}{2} [/tex]
substituting this to equation 2 you'll have:
6x - 5y = 5/6
[tex]6( \frac{2}{5} - \frac{5y}{2}) - 5y = \frac{5}{6} [/tex]
[tex]6( \frac{2}{5}) - \frac{6(5y)}{2} - 5y = \frac{5}{6} [/tex]
[tex] \frac{12}{5} - 15y - 5y = \frac{5}{6} [/tex]
[tex] \frac{12}{5} - \frac{5}{6} = 15y + 5y [/tex]
[tex]20y = \frac{12}{5} - \frac{5}{6} [/tex]
[tex]20y = \frac{12(6)-5(5)}{30} [/tex]
[tex]20y = \frac{71-25}{30} [/tex]
[tex]20y = \frac{47}{30} [/tex]
[tex]y = \frac{47}{30(20)} [/tex]
[tex]y = \frac{47}{600} [/tex]
substituting the value for y to equation 1
2x + 5y = 4/5
2x + 5(47/600) = 4/5
[tex]2x = \frac{4}{5} - \frac{5(47)}{600} [/tex]
[tex]2x = \frac{4}{5} - \frac{47}{120} [/tex]
[tex]2x = \frac{49}{120} [/tex]
[tex]x = \frac{49}{240} [/tex]