IDNStudy.com, ang iyong platform ng sanggunian para sa pangkomunidad na mga sagot. Ang aming mga eksperto ay nagbibigay ng mabilis at eksaktong sagot upang tulungan kang maunawaan at malutas ang anumang problema.

A hypothetical square grows so that the length of its sides are increasing at a rate of [ 5 ] m/min. How fast is the area of the square increasing when the sides are [ 6 ] m each?

Sagot :

The area of a square is defined by the formula
A = s²
where A is the area and s is the length of one side
you are given with the following data
[tex] \frac{ds}{dt} = 5 m/min[/tex]
[tex]s = 6m[/tex]
since this involves the change of area as to time then having the area differentiated you'll have:
[tex]A = s^2[/tex]
[tex] \frac{dA}{dt} = (2s) \frac{ds}{dt} [/tex]
substituting the given you'll have:
[tex] \frac{dA}{dt} = 2(6m)(5m/min)[/tex]
[tex] \frac{dA}{dt} = 60 m^2/min[/tex]