Makakuha ng detalyadong mga sagot sa lahat ng iyong katanungan sa IDNStudy.com. Alamin ang mga detalyadong sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

What is the area of the circle 4x^2 +4y^2 - 7x +6y -35 = 0

Sagot :

The equation of the circle is given by:
[tex]4 x^{2} +4 y^{2} -7x+6y-35=0 [/tex]

We could transform this to its general form [tex](x-h)^2+(y-k)^2=r^2[/tex] by manipulating the equation. (Mostly by completing a square.)

Rearranging the equation to easily see like terms, we get:
[tex]4x^2 -7x +4y^2 +6y -35=0[/tex]

Using the techniques of completing the square, we will have:
[tex](4x^2-7x+ \frac{49}{16}) - \frac{49}{16} +(4y^2+6y+\frac{3}{2}) -\frac{3}{2} -35=0[/tex]

Rearranging:
[tex](4x^2-7x+ \frac{49}{16})+(4y^2+6y+ \frac{9}{4}) = \frac{49}{16} + \frac{9}{4}+35[/tex]

Combining:
[tex](2x+ \frac{7}{4})^2 +(2x+ \frac{3}{2})^2= (\frac{ \sqrt{645} }{4} )^2[/tex]

Now, since we have the general equation and we know the value of r, which is [tex] \frac{ \sqrt{645} }{4} [/tex], we use the formula of getting the area of a circle in terms of r. 

Area= πr^2

Therefore the area is:
[tex]\frac{645 \pi }{16} [/tex]

Hope that helps.

If you still have any problems and/or if there are any errors in this answer please post a comment on my profile or message me. Thanks!