Makahanap ng mga solusyon at sagot sa lahat ng iyong katanungan sa IDNStudy.com. Magtanong at makakuha ng detalyadong sagot mula sa aming komunidad ng mga eksperto na may kaalaman.

Find the slope-intercept form of the equation of the line passing through the points. Sketch the points

1.)  (4,3) (-4,-4)
2.) ( 3/4 , 3,2)  (-4/3 , 7/4)


Sagot :

[tex]1.) \\ (4,3), \ \ \ (-4,-4)\\\\First \ find \ the \ slope \ of \ the \ line \ thru \ the \ points \: \\ \\ m= \frac{y_{2}-y_{1}}{x_{2}-x_{1} } \\ \\m=\frac{-4-3}{-4-4} = \frac{-7}{-8}=\frac{ 7}{ 8} \\ \\ Use \ point \ form \ of \ a \ line\ with \ one \ point:[/tex]

[tex]y-y_{1} =m(x-x _{1}) \\ \\y-3=\frac{7}{8} (x-4)\\\\y=\frac{7}{8}x-\frac{7}{2}+3\\\\y=\frac{7}{8}x-3.5+3\\\\y=\frac{7}{8}x-0.5[/tex]


[tex]2.)\\\\ ( \frac{3}{4} , 3.2)=( \frac{3}{4} , \frac{32}{10})=( \frac{3}{4} , \frac{16}{5}) , \\ (-\frac{4}{3} , \frac{7}{4} )\\\\First \ find \ the \ slope \ of \ the \ line \ thru \ the \ points \: \\ \\ m= \frac{y_{2}-y_{1}}{x_{2}-x_{1} }[/tex]

[tex]m=\frac{ \frac{7}{4}-\frac{16}{5}}{-\frac{4}{3}-\frac{3}{4} } = \frac{ \frac{35}{20}-\frac{64}{20}}{-\frac{16}{12}-\frac{9}{12} } =\frac{-\frac{29}{20}}{-\frac{25}{12}} =(-\frac{29}{20}):(-\frac{25}{12} )=(-\frac{29}{20})*(-\frac{12} {25} )= \frac{87}{125} \\ \\ Use \ point \ form \ of \ a \ line\ with \ one \ point: \\\\ y-y_{1} =m(x-x _{1}) \\ \\y- \frac{16}{5}=\frac{87}{125} (x-\frac{3}{4} )[/tex]

[tex]y- \frac{16}{5}=\frac{87}{125} x-\frac{87}{125} \cdot \frac{3}{4} \\\\ y =\frac{87}{125} x-\frac{261}{500} +\frac{16}{5}\\\\y=\frac{87}{125} x-\frac{261}{500} +\frac{1600}{500}\\\\y=\frac{87}{125} x +\frac{1339}{500}[/tex]
 

View image Riza1
View image Riza1