IDNStudy.com, ang komunidad ng pagbabahagi ng kaalaman at mga sagot. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

Find the slope-intercept form of the equation of the line passing through the points. Sketch the points

1.)  (4,3) (-4,-4)
2.) ( 3/4 , 3,2)  (-4/3 , 7/4)


Sagot :

[tex]1.) \\ (4,3), \ \ \ (-4,-4)\\\\First \ find \ the \ slope \ of \ the \ line \ thru \ the \ points \: \\ \\ m= \frac{y_{2}-y_{1}}{x_{2}-x_{1} } \\ \\m=\frac{-4-3}{-4-4} = \frac{-7}{-8}=\frac{ 7}{ 8} \\ \\ Use \ point \ form \ of \ a \ line\ with \ one \ point:[/tex]

[tex]y-y_{1} =m(x-x _{1}) \\ \\y-3=\frac{7}{8} (x-4)\\\\y=\frac{7}{8}x-\frac{7}{2}+3\\\\y=\frac{7}{8}x-3.5+3\\\\y=\frac{7}{8}x-0.5[/tex]


[tex]2.)\\\\ ( \frac{3}{4} , 3.2)=( \frac{3}{4} , \frac{32}{10})=( \frac{3}{4} , \frac{16}{5}) , \\ (-\frac{4}{3} , \frac{7}{4} )\\\\First \ find \ the \ slope \ of \ the \ line \ thru \ the \ points \: \\ \\ m= \frac{y_{2}-y_{1}}{x_{2}-x_{1} }[/tex]

[tex]m=\frac{ \frac{7}{4}-\frac{16}{5}}{-\frac{4}{3}-\frac{3}{4} } = \frac{ \frac{35}{20}-\frac{64}{20}}{-\frac{16}{12}-\frac{9}{12} } =\frac{-\frac{29}{20}}{-\frac{25}{12}} =(-\frac{29}{20}):(-\frac{25}{12} )=(-\frac{29}{20})*(-\frac{12} {25} )= \frac{87}{125} \\ \\ Use \ point \ form \ of \ a \ line\ with \ one \ point: \\\\ y-y_{1} =m(x-x _{1}) \\ \\y- \frac{16}{5}=\frac{87}{125} (x-\frac{3}{4} )[/tex]

[tex]y- \frac{16}{5}=\frac{87}{125} x-\frac{87}{125} \cdot \frac{3}{4} \\\\ y =\frac{87}{125} x-\frac{261}{500} +\frac{16}{5}\\\\y=\frac{87}{125} x-\frac{261}{500} +\frac{1600}{500}\\\\y=\frac{87}{125} x +\frac{1339}{500}[/tex]
 

View image Riza1
View image Riza1