IDNStudy.com, ang komunidad ng pagbabahagi ng kaalaman at mga sagot. Ang aming platform ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.

quadratic function in Algebra
please solve the following:

1. f(x)= x2+6x-4
2. x2-676
3. 9x2-30=6
4. x2+8x+7=0
5. x2+4x-3=0
6. x2+2x-1=0

thanks!


Sagot :

[tex]1.)\\\\ f(x)= x^2+6x-4 \\ \\x^2+6x-4=0\\\\a=1, \ \ b=6, \ \ c=-4[/tex]

[tex]x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-6-\sqrt{6^2-4 \cdot 1\cdot (-4) }}{2 }=\frac{-6-\sqrt{36+16 }}{2 }=\\\\=\frac{-6-\sqrt{52 }}{2 } =\frac{-6-\sqrt{4\cdot 13 }}{2 }=\frac{-6-2\sqrt{ 13 }}{2 }=\frac{2(-3- \sqrt{ 13 })}{2 }=-3- \sqrt{ 13 }\\\\\\x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}=\frac{-6+\sqrt{6^2-4 \cdot 1\cdot (-4) }}{2 }=\frac{2(-3+\sqrt{ 13 })}{2 }=-3+ \sqrt{ 13 }[/tex]


[tex]2.)\\\\ x^2-676 =0 \\ \\(x-26)(x+26)=0\\\\x-26=0 \ \ or \ \ x+26 =0 \\\\x=26 \ \ or \ \ x=-26[/tex]


[tex]3.) 9x^2-30=6 \\\\9x^2-30-6=0\\\\ 9x^2-36=0\\\\(3x-6)(3x+6)=0\\\\3x-6=0\ \ \ or \ \ \ 3x+6=0[/tex]

[tex]3x=6 \ \ \ or \ \ \ 3x=-6\ \ / | \ divide \ both \ sides\ by\ 3 \\\\x=2 \ \ \ or \ \ \ x=-2[/tex]


[tex]4.)\\\\ x^2+8x+7=0\\\\ x^2+x+7x+7=0\\\\x(x +1)+7( x+1)=0\\\\(x+1)(x+7)=0[/tex]

[tex]x+1=0 \ \ \ or \ \ \ x+7 =0 \\\\x=-1 \ \ \ or \ \ \ x=-7[/tex]


[tex]5. )x^2+4x-3=0\\\\ a=1, \ \ \ b=4, \ \ \ c=-3[/tex]

[tex]x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-4-\sqrt{4^2-4 \cdot 1\cdot (- 3) }}{2 }=\frac{-4-\sqrt{16+12 }}{2 }=\\\\=\frac{-4-\sqrt{28 }}{2 }=\frac{-4-\sqrt{4\cdot 7 }}{2 }=\frac{-4-2\sqrt{7 }}{2 } =\frac{2(-2- \sqrt{7 })}{2 }=-2-\sqrt{7}\\\\\\x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-4+\sqrt{4^2-4 \cdot 1\cdot (- 3) }}{2 }= \frac{2(-2+ \sqrt{7 })}{2 }=-2+\sqrt{7}[/tex]


[tex]6. )\\\\ x^2+2x-1=0 \\ \\a=1, \ \ \ \b=2, \ \ \ c=-1\\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-2-\sqrt{2^2-4 \cdot 1\cdot (- 1) }}{2 }=\frac{-2-\sqrt{4+ 4 }}{2 }= \frac{-2-\sqrt{8 }}{2 }= \\\\= \frac{-2-\sqrt{4\cdot 2 }}{2 } =\frac{-2-2\sqrt{ 2 }}{2 }=\frac{2(-1- \sqrt{ 2 })}{2 } =-1- \sqrt{ 2 }[/tex]

[tex]x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}= \frac{-2+\sqrt{2^2-4 \cdot 1\cdot (- 1) }}{2 }= \frac{2(-1+ \sqrt{ 2 })}{2 } =-1+\sqrt{ 2 }[/tex]