IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mabilis na sagot. Sumali sa aming platform ng tanong at sagot upang makakuha ng eksaktong tugon sa lahat ng iyong mahahalagang tanong.

A rectangular lot has an area of 240 m squared. What is the width of the lot if it requires 64 m of fencing materials to enclose it?

Sagot :

[tex]Area \ of \ a \ rectangle : \ \ A=240 \ m^2 \\ Perimeter \ of \ a \ rectangle : \ P=64 \ m\\\\width \ of \ a \ rectangle : \ w=? \\length\ of \ a \ rectangle: \ l=?\\\\\begin{cases}P=2w+2l \\ A=l\cdot w \end{cases}\\\\\begin{cases}64=2w+2l \\ 240=l\cdot w \end{cases}[/tex]
 
[tex]\begin{cases}32= w+ l \\ 24=l\cdot w \end{cases} \\\\\begin{cases} w=32- l \\ 240=l\cdot w \end{cases}\\\\substitution\\\\240=l(32-l)\\240=32l-l^2\\\l^2-32l+240=0[/tex]

[tex]a=1, \ \ b=-32, \ \ c=240 \\l_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{32-\sqrt{ (-32)^2-4 \cdot 1 \cdot 240}}{2 }=\frac{32-\sqrt{1024 -960}}{2 }=\\\\=\frac{32-\sqrt{64}}{2 }=\frac{32-8}{2}=\frac{24}{2}=12\\\\\l_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}=\frac{32+\sqrt{ (-32)^2-4 \cdot 1 \cdot 240}}{2 }=\frac{32+8}{2}=\frac{40}{2}=20[/tex]

[tex]\begin{cases} l_{1}=12 \\ w=32-l \end{cases} \ \ or \ \ \begin{cases} l_{1}=20 \\ w=32-l \end{cases} \\\\ \begin{cases} l_{1}=12 \\ w=32-12 \end{cases} \ \ or \ \ \begin{cases} l_{1}=20 \\ w=32-20 \end{cases}\\ \\ \begin{cases} l_{1}=12\ m \\ w=20\ m \end{cases} \ \ or \ \ \begin{cases} l_{1}=20\ m \\ w=12 \ m \end{cases} \\\\Answer : \ The \ width \ of \ the \ lot \ is \ 12 \ m \ or \ 20 \ m .[/tex]