IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mga maaasahang sagot. Makakuha ng mga sagot sa iyong mga tanong mula sa aming mga eksperto, handang magbigay ng mabilis at tiyak na solusyon.

how to answer ?y=2(x+5/4)²-49/8

Sagot :

[tex]y=2(x+ \frac{5}{4})^2-\frac{49}{8}[/tex]

Vertex-form equation for a vertical parabola:

[tex]y = a(x - h)^2 + k \\vertex \ is \ (h, k) \\\\The \ vertex \ is : \ (-\frac{5}{4}, -\frac{49}{8} )[/tex]

a > 0, \ so \ the \ parabola \ opens \ upwards.
 
The minimum  value  of   y is  at the   vertex,   where  [tex]y = -\frac{49}{8}[/tex]

Since  the  parabola  opens upwards and   the vertex   is  \ [tex](-\frac{5}{4} ,-\frac{49}{8}): \\it \ is \ decreasing \ when \ x < -\frac{5}{4} \\it \ is \ increasing \ when \ x > -\frac{5}{4}[/tex]



[tex]the \ roots \ of \ the \ parabola :\\ \\2(x+ \frac{5}{4})^2-\frac{49}{8}=0\\\\2(x^2+\frac{5}{2}x+\frac{25}{16})-\frac{49}{8}=0\\\\2 x^2+5x+\frac{25}{8} -\frac{49}{8}=0\\\\2 x^2+5x-\frac{24}{8} =0[/tex]

[tex]2 x^2+5x-3 =0 \\a=2, \ \ b=5 , \ \ c=-3 \\\\x_{1}=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-5-\sqrt{5^2-4 \cdot2 \cdot (-3) }}{2 \cdot 2}=\frac{-5-\sqrt{25+24 }}{4}=\\\\=\frac{-5-\sqrt{49 }}{4}=\frac{-5-7}{4}=\frac{-12}{4}=-3\\\\x_{2}=\frac{-b+\sqrt{b^2-4ac}}{2a}=\frac{-5+7}{4}= \frac{-2}{4}=-\frac{1}{2}[/tex]






View image Riza1