Answered

IDNStudy.com, ang iyong mapagkakatiwalaang mapagkukunan para sa eksaktong at maaasahang mga sagot. Ang aming platform ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.

Find the equation of the line thru the point (2, -5) and perpendicular to the line whose equation is x - 5y = - 8


Sagot :

[tex](2, -5) , \ \ \ x - 5y = - 8 \\ \\ x - 5y = - 8 \ subtract \ (-x )\ from \ each \ side \\ \\ -5y = - x -8 \ divide \ each \ term \ by \ (-5) \\ \\ y = \frac{1} {5}x + \frac{ 8}{5}\\ \\ The \ slope \ is : \ m _{1} = \frac{1}{5}[/tex]

[tex]If \ m_{1} \ and \ m _{2} \ are \ the \ gradients \ of \ two \ perpendicular \\ \\ lines \ we \ have : \\ m _{1}*m _{2} = -1 \\\\\frac{1}{5}\cdot m_{2}=-1 \ \ / \cdot 5\\\\m_{2}=-5[/tex]

[tex]Now \ your \ equation \ of \ line \ passing \ through \ (2,-5) would \ be: \\ \\ y=m_{2}\cdot x+b \\ \\-5=(-5) \cdot 2 + b \\ \\ -5= -10+b\\ \\ b=-5+10=5\\\\ y = -5x +5[/tex]