Answered

Tuklasin ang maliwanag na mga sagot sa iyong mga tanong sa IDNStudy.com. Sumali sa aming platform upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

Find the equation of the line thru the point (2, -5) and perpendicular to the line whose equation is x - 5y = - 8


Sagot :

[tex](2, -5) , \ \ \ x - 5y = - 8 \\ \\ x - 5y = - 8 \ subtract \ (-x )\ from \ each \ side \\ \\ -5y = - x -8 \ divide \ each \ term \ by \ (-5) \\ \\ y = \frac{1} {5}x + \frac{ 8}{5}\\ \\ The \ slope \ is : \ m _{1} = \frac{1}{5}[/tex]

[tex]If \ m_{1} \ and \ m _{2} \ are \ the \ gradients \ of \ two \ perpendicular \\ \\ lines \ we \ have : \\ m _{1}*m _{2} = -1 \\\\\frac{1}{5}\cdot m_{2}=-1 \ \ / \cdot 5\\\\m_{2}=-5[/tex]

[tex]Now \ your \ equation \ of \ line \ passing \ through \ (2,-5) would \ be: \\ \\ y=m_{2}\cdot x+b \\ \\-5=(-5) \cdot 2 + b \\ \\ -5= -10+b\\ \\ b=-5+10=5\\\\ y = -5x +5[/tex]