Answered

IDNStudy.com, ang platform na nag-uugnay ng mga tanong sa mga sagot ng eksperto. Tuklasin ang malawak na hanay ng mga paksa at makahanap ng maaasahang sagot mula sa mga bihasang miyembro ng aming komunidad.

Find the equation of the line thru the point (2, -5) and perpendicular to the line whose equation is x - 5y = - 8


Sagot :

[tex](2, -5) , \ \ \ x - 5y = - 8 \\ \\ x - 5y = - 8 \ subtract \ (-x )\ from \ each \ side \\ \\ -5y = - x -8 \ divide \ each \ term \ by \ (-5) \\ \\ y = \frac{1} {5}x + \frac{ 8}{5}\\ \\ The \ slope \ is : \ m _{1} = \frac{1}{5}[/tex]

[tex]If \ m_{1} \ and \ m _{2} \ are \ the \ gradients \ of \ two \ perpendicular \\ \\ lines \ we \ have : \\ m _{1}*m _{2} = -1 \\\\\frac{1}{5}\cdot m_{2}=-1 \ \ / \cdot 5\\\\m_{2}=-5[/tex]

[tex]Now \ your \ equation \ of \ line \ passing \ through \ (2,-5) would \ be: \\ \\ y=m_{2}\cdot x+b \\ \\-5=(-5) \cdot 2 + b \\ \\ -5= -10+b\\ \\ b=-5+10=5\\\\ y = -5x +5[/tex]