Makakuha ng mabilis at maaasahang mga sagot sa iyong mga tanong sa IDNStudy.com. Makakuha ng mga kumpletong sagot sa lahat ng iyong mga tanong mula sa aming network ng mga eksperto.

How to do the completing the square in quadratic equation? Please answer x^2+5x=11

Sagot :

We are given the equation x^2 + 5x + D = 11 + D. In this equation, A is 1, B is 5 and C is 11. Now, we divide B (which is 5) by 2, square it and multiply with A to get D: (5/2)^2 = 25/4 --> x^2 + 5x + (25/4) = 11 + (25/4) --> Factor the quad. equation: (x - (5/2))(x - (5/2)) = 69/4 --> (x - (5/2))^2 - 69/4 = 0.
[tex]x^2+5x=11 \\\\x^2+5x-11 =0 \\ \\ a=1, \ b=5 , \ \ c=-11\\ \\ x = \frac{-b\pm \sqrt{b^2-4ac}}{2a} \\ \\ x_{1} = \frac{-5 -\sqrt{5^2-4 \cdot 1 \cdot (-11)}}{2 \cdot 1} =\frac{-5-\sqrt{25+44}}{2} =\frac{-5-\sqrt{69}}{2} \approx \frac{-5-8,3}{2} \approx -\frac{13,3}{2} \approx -6,65[/tex]

[tex]x_{2} = \frac{-5+\sqrt{5^2-4 \cdot 1 \cdot (-11)}}{2 \cdot 1} =\frac{-5+\sqrt{25+44}}{2} = \frac{-5+\sqrt{69}}{2} \approx \frac{-5+8,3}{2} \approx \frac {3,3}{2} \approx 1,65[/tex]