IDNStudy.com, ang iyong destinasyon para sa mga maaasahang sagot. Tuklasin ang libu-libong mga sagot na na-verify ng mga eksperto at hanapin ang mga solusyong kailangan mo, anuman ang paksa.
Sagot :
First we find the third side: 26 = X + 8 + 12 --> X = 6. Then, we find (S) to be used in finding the area of the triangle: S = (1/2)(8 + 12 + 6) = 13. To find the area, we solve: A = sqrt (13)(13 - 8)(13 - 12)(13 - 6) = 21.33 cm^2.
[tex]Two \ sides \ of \ a \ triangle \ measures : \\a= 8\ cm, \ \ b= 12\ cm , \ \ c=? \\ perimeter : \ P=26 \ cm \\\\P=a+b+c\\ \\26 =8+12+c \\26=20+c\\c=26-20\\c=6\ cm[/tex]
[tex]Heron's \ formula \\ \\ You \ can \ use \ this \ formula \ to \ find \ the \ area \ of \ a \ triangle \ using \ the \ 3 \ side \ lengths. \\ \\ A = \sqrt{s(s-a)(s-b)(s-c)} \\ \\where \ " s" \ is \ the semi \ perimeter \ of \ the t\ riangle : \\ \\s=\frac{a+b+c}{2}.[/tex]
[tex]s=\frac{8+12+6}{2}=\frac{26}{2}=13 \ cm\\ \\ A = \sqrt{13(13-8)(13-12)(13-6)}\\\\A = \sqrt{13 \cdot 5\cdot 1\cdot 7} \\\\A=\sqrt{455}\ cm^2\\ \\A\approx 21,33 \ cm^2[/tex]
[tex]Heron's \ formula \\ \\ You \ can \ use \ this \ formula \ to \ find \ the \ area \ of \ a \ triangle \ using \ the \ 3 \ side \ lengths. \\ \\ A = \sqrt{s(s-a)(s-b)(s-c)} \\ \\where \ " s" \ is \ the semi \ perimeter \ of \ the t\ riangle : \\ \\s=\frac{a+b+c}{2}.[/tex]
[tex]s=\frac{8+12+6}{2}=\frac{26}{2}=13 \ cm\\ \\ A = \sqrt{13(13-8)(13-12)(13-6)}\\\\A = \sqrt{13 \cdot 5\cdot 1\cdot 7} \\\\A=\sqrt{455}\ cm^2\\ \\A\approx 21,33 \ cm^2[/tex]
Pinahahalagahan namin ang bawat ambag mo. Huwag kalimutang bumalik at magtanong ng mga bagong bagay. Ang iyong kaalaman ay napakahalaga sa ating komunidad. Para sa mabilis at maasahang mga sagot, bisitahin ang IDNStudy.com. Nandito kami upang tumulong sa iyo.