Sumali sa IDNStudy.com at makakuha ng mga sagot sa iyong mga tanong. Hanapin ang mga solusyong kailangan mo nang mabilis at madali sa tulong ng aming mga eksperto.

Kindly solve the following:
(16x^-6 y^4)^1/2

(8x^-3 y^-9)^2/3

(-2a^3/2 b^-1)^4

(a^1/2 - b^1/2)^2

Thanks!


Sagot :

1. First, we expand the expression: ((4^2)(y^4) / (x^6))^1/2 --> By laws of exponents, we multiply 1/2 by the exponents of the terms: [(4^2/2)(y^4/2) / (x^6/2)] = (4y^2 / x^3) 2. We first expand the expression: [(2^3) / (x^3)(y^9)]^2/3 --> By laws of exponents, we multiply thte exponenets of the terms by 2/3: [(2^6/3) / (x^6/3)(y^18/3)] = (4 / x^2 y^6) 3. Since there are no fraction exponents, we now proceed into multiplying the exponents: [((-2)^4)(a^12/2) / (b^4)] = (16a^6 / b^4) 4. Since there is an operation, we first expand the term: (a^1/2 - b^1/2)(a^1/2 - b^1/2) = (a^2/2 - 2(a^1/2)(b^1/2) + b^2/2) = a - 2(a^1/2)(b^1/2) + b
[tex]1)\\\\(16x^{-6} y^4)^{\frac{1}{2}}=16^{\frac{1}{2}} \cdot x^{-6\cdot \frac{1}{2}}\cdot y^{4\cdot\frac{ 1}{2}}=\sqrt{16}\cdot x^{-3}y^{2}=4x^{-3}y^{2}=\frac{1}{x^3}\cdot 4y^{2}=\frac{4y^2}{x^3}\\\\x\neq 0[/tex]


[tex]2)\\\\(8x ^{-3} y^{-9} )^{\frac{2}{3}} =8^{\frac{2}{3}} \cdot x^{-3\cdot \frac{2}{3}}\cdot y^{-9\cdot\frac{ 2}{3}}=\sqrt[3]{8^{2}} \cdot x^{-2} \cdot y^{-6} =\sqrt[3]{64} \cdot\frac{1}{x^{ 2}} \cdot \frac{1}{y^{ 6}} =\frac{4}{x^2y^6}\\\\x,y\neq0[/tex]
 

[tex]3)\\\\(-2a^{\frac{3}{2}} \cdot b^{-1 })^4=(-2)^{4}\cdot a^{\frac{3}{2}\cdot 4} \cdot b^{-1\cdot 4}=(-2)^{4}\cdot a^{\frac{3}{2}\cdot 4} \cdot b^{(-1)\cdot 4}=16a^{6} \cdot b^{-4}=\\\\=16a^{6} \cdot \frac{1}{b^{ 4}}=\frac{16a^6}{b^{4}}\\\\b\neq 0[/tex]


[tex]4)\\\\(a^{\frac{1}{2}} - b ^{\frac{1}{2}})^2= (\sqrt{a}-\sqrt{b})^{2}=(\sqrt{a})^{2}-2\sqrt{a}\sqrt{b}+(\sqrt{b})^{2}=a-2\sqrt{ab}+b[/tex]