Makakuha ng mga payo ng eksperto at detalyadong mga sagot sa IDNStudy.com. Tuklasin ang malawak na hanay ng mga paksa at makahanap ng maaasahang sagot mula sa mga bihasang miyembro ng aming komunidad.

Kindly solve the following:
(16x^-6 y^4)^1/2

(8x^-3 y^-9)^2/3

(-2a^3/2 b^-1)^4

(a^1/2 - b^1/2)^2

Thanks!


Sagot :

1. First, we expand the expression: ((4^2)(y^4) / (x^6))^1/2 --> By laws of exponents, we multiply 1/2 by the exponents of the terms: [(4^2/2)(y^4/2) / (x^6/2)] = (4y^2 / x^3) 2. We first expand the expression: [(2^3) / (x^3)(y^9)]^2/3 --> By laws of exponents, we multiply thte exponenets of the terms by 2/3: [(2^6/3) / (x^6/3)(y^18/3)] = (4 / x^2 y^6) 3. Since there are no fraction exponents, we now proceed into multiplying the exponents: [((-2)^4)(a^12/2) / (b^4)] = (16a^6 / b^4) 4. Since there is an operation, we first expand the term: (a^1/2 - b^1/2)(a^1/2 - b^1/2) = (a^2/2 - 2(a^1/2)(b^1/2) + b^2/2) = a - 2(a^1/2)(b^1/2) + b
[tex]1)\\\\(16x^{-6} y^4)^{\frac{1}{2}}=16^{\frac{1}{2}} \cdot x^{-6\cdot \frac{1}{2}}\cdot y^{4\cdot\frac{ 1}{2}}=\sqrt{16}\cdot x^{-3}y^{2}=4x^{-3}y^{2}=\frac{1}{x^3}\cdot 4y^{2}=\frac{4y^2}{x^3}\\\\x\neq 0[/tex]


[tex]2)\\\\(8x ^{-3} y^{-9} )^{\frac{2}{3}} =8^{\frac{2}{3}} \cdot x^{-3\cdot \frac{2}{3}}\cdot y^{-9\cdot\frac{ 2}{3}}=\sqrt[3]{8^{2}} \cdot x^{-2} \cdot y^{-6} =\sqrt[3]{64} \cdot\frac{1}{x^{ 2}} \cdot \frac{1}{y^{ 6}} =\frac{4}{x^2y^6}\\\\x,y\neq0[/tex]
 

[tex]3)\\\\(-2a^{\frac{3}{2}} \cdot b^{-1 })^4=(-2)^{4}\cdot a^{\frac{3}{2}\cdot 4} \cdot b^{-1\cdot 4}=(-2)^{4}\cdot a^{\frac{3}{2}\cdot 4} \cdot b^{(-1)\cdot 4}=16a^{6} \cdot b^{-4}=\\\\=16a^{6} \cdot \frac{1}{b^{ 4}}=\frac{16a^6}{b^{4}}\\\\b\neq 0[/tex]


[tex]4)\\\\(a^{\frac{1}{2}} - b ^{\frac{1}{2}})^2= (\sqrt{a}-\sqrt{b})^{2}=(\sqrt{a})^{2}-2\sqrt{a}\sqrt{b}+(\sqrt{b})^{2}=a-2\sqrt{ab}+b[/tex]