Answered

IDNStudy.com, ang komunidad ng pagbabahagi ng kaalaman at mga sagot. Ang aming platform ng tanong at sagot ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.

find the area in sq cm of a rhombus whose side length is 29 cm and whose diagonal differ in length by 2 cm

Sagot :

[tex]side \ length : \ a=29 \ cm \\ one \ diagonal: \ d \\the \ second \ diagonal: \ e=d+2 \\\\ use \ the \ Pythagorean \ Theorem\\\\\left(\frac{d}{2}\right)^2+\left(\frac{e}{2}\right)^2=a^2\\\\\left(\frac{d}{2}\right)^2+\left(\frac{d+2}{2}\right)^2=29^2[/tex]

[tex]\frac{d^2}{4}+\frac{d^2+4d+4}{4}=841\ \ \ \ /\cdot4\\\\d^2+d^2+4d+4=3364\\\\2d^2+4d+4-3364=0\\\\2d^2+4d-3360=0\ \ \ \ /:2\\\\d^2+2d-1680=0[/tex]

[tex]a=1, \ \ \ b=2, \ \ \ c=-1680\\\\\Delta=b^2-4ac=\Delta=2^2-4\cdot1\cdot(-1680)=4+6720=6724\\\\\sqrt\Delta=\sqrt{6724}=82\\\\d_1=\frac{-b-\sqrt\Delta}{2a} =\frac{-2-\sqrt{6724}}{2 }=\frac{-2-82}{2}=-\frac{84}{2}=-42 \\ \\d_{1} < 0[/tex]
 
[tex]d_2=\frac{-b+\sqrt\Delta}{2a} =\frac{-2+\sqrt{6724}}{2}=\frac{-2+82}{2 }=\frac{80}{2}=40\ cm \\\\d=40cm \\ e=d+2=40+2=42 \ cm\ \\\\Area \ a \ rhombus: \\\\ A =\frac{1}{2}d\cdot e \\ \\ A =\frac{1}{2}\cdot 40 \cdot 42 =20\cdot 42=840\ cm^2 Answer: \ Area \ a \ rhombus \ is \ 840 \ cm^2.[/tex]

 

View image Riza1