Answered

Sumali sa IDNStudy.com at makakuha ng mga sagot ng eksperto. Magtanong at makatanggap ng maaasahang sagot mula sa aming dedikadong komunidad ng mga eksperto.

find the area in sq cm of a rhombus whose side length is 29 cm and whose diagonal differ in length by 2 cm

Sagot :

[tex]side \ length : \ a=29 \ cm \\ one \ diagonal: \ d \\the \ second \ diagonal: \ e=d+2 \\\\ use \ the \ Pythagorean \ Theorem\\\\\left(\frac{d}{2}\right)^2+\left(\frac{e}{2}\right)^2=a^2\\\\\left(\frac{d}{2}\right)^2+\left(\frac{d+2}{2}\right)^2=29^2[/tex]

[tex]\frac{d^2}{4}+\frac{d^2+4d+4}{4}=841\ \ \ \ /\cdot4\\\\d^2+d^2+4d+4=3364\\\\2d^2+4d+4-3364=0\\\\2d^2+4d-3360=0\ \ \ \ /:2\\\\d^2+2d-1680=0[/tex]

[tex]a=1, \ \ \ b=2, \ \ \ c=-1680\\\\\Delta=b^2-4ac=\Delta=2^2-4\cdot1\cdot(-1680)=4+6720=6724\\\\\sqrt\Delta=\sqrt{6724}=82\\\\d_1=\frac{-b-\sqrt\Delta}{2a} =\frac{-2-\sqrt{6724}}{2 }=\frac{-2-82}{2}=-\frac{84}{2}=-42 \\ \\d_{1} < 0[/tex]
 
[tex]d_2=\frac{-b+\sqrt\Delta}{2a} =\frac{-2+\sqrt{6724}}{2}=\frac{-2+82}{2 }=\frac{80}{2}=40\ cm \\\\d=40cm \\ e=d+2=40+2=42 \ cm\ \\\\Area \ a \ rhombus: \\\\ A =\frac{1}{2}d\cdot e \\ \\ A =\frac{1}{2}\cdot 40 \cdot 42 =20\cdot 42=840\ cm^2 Answer: \ Area \ a \ rhombus \ is \ 840 \ cm^2.[/tex]

 

View image Riza1