Answered

Makakuha ng maliwanag na mga sagot sa iyong mga tanong sa IDNStudy.com. Sumali sa aming platform upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

If you are to solve each of the following quadratic equations, which method would you use and why? Explain your answer.
a. 9x2 = 225 d. 2x2 + x – 28 = 0

b. 4x2 – 121 = 0 e. 4x2 + 16x + 15 = 0

c. x2 + 11x + 30 = 0 f. 4x2 + 4x – 15 = 0


Sagot :

a. Factoring - since the it can be factored to (3x - 5)(3x + 5) by Binomial Theorem. b. Factoring - binomial theorem is also applied (2x - 11)(2x + 11) c. Quadratic Equation - can not be factored easily d. Factoring - can be factored (2x - 7)(x + 4) e. Factoring - can be factored (2x + 3)(2x + 5) f. Factoring - can be factored (2x - 3)(2x + 5)
[tex]a.\\ 9x^2 = 225 \\9x^2-225=0\\(3x)^2-15^2=0\\(3x-15)(3x+15)=0 \\3x-15=0\ \ or\ \ 3x+15 =0 \\3x=15 \ \ or \ \ 3x=-15 \\x= 3 \ \ or\ \ x=-3\\ \\Factoring : \ a^2-b^2=(a-b)(a+b)[/tex]

[tex]b.\\\\ 4x^2 - 121 = 0\\(2x)^2-11^2 =0\\(2x-11)(2x+11)=0 \\\\2x-11=0 \ \ or \ \ 2x+11=0 \\2x=11 \ \ or \ \ 2x=-11\\ x=\frac{11}{2} \ \ or \ \ x=-\frac{11}{2} \\ x=5.5 \ \ or \ \ x=-5.5 \\Factoring[/tex]

[tex]c.\\\\ x^2 + 11x + 30 = 0 \\a=1, \ \ b=11, \ \c=30 \\\\ \Delta =b^2-4ac = 11^2 -4\cdot1\cdot 30 = 121-120=1 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-11-\sqrt{1 }}{2 }=\frac{ -11-1}{2}=\frac{-12}{2}=-6 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a}=\frac{-11+\sqrt{1 }}{2 }=\frac{ -11+1}{2}=\frac{-10}{2}=-5\\\\ Quadratic \ Equation - can \ not \ be \ easily \ decomposed \ into \ factors[/tex]
 
[tex]d.\\\\ 2x^2 + x - 28 = 0 \\a=2, \ \ b=1 , \ \c=-28 \\\\ \Delta =b^2-4ac = 1^2 -4\cdot2\cdot (-28) = 1+224=225 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-1-\sqrt{225}}{2\cdot 2 }=\frac{ -1-15}{4}=\frac{-16}{4}=-4 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-1+\sqrt{225}}{2\cdot 2 }=\frac{ -1+15}{4}=\frac{ 14}{4}= 3.5\\\\ Quadratic \ Equation[/tex]

[tex]e. \\\\4x^2 + 16x + 15 = 0 \\a=4, \ \ b=16 , \ \c=15 \\\\ \Delta =b^2-4ac = 16^2 -4\cdot4\cdot 15 = 256-240=16 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-16-\sqrt{16}}{2\cdot 4 }=\frac{ -16-4}{8}=\frac{-20}{8}=- \frac{5}{2}=-2.5 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-16+\sqrt{16}}{2\cdot 4 }=\frac{ -16+4}{8}=\frac{-12}{8}=- \frac{3}{2}=-1.5\\\\ Quadratic \ Equation[/tex]

[tex]e.\\\\ 4x^2 + 4x - 15 = 0 \\a=4, \ \ b=4, \ \c=-15 \\\\ \Delta =b^2-4ac = 4^2 -4\cdot4\cdot (- 15 )= 16+240=256 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-4-\sqrt{256}}{2\cdot 4 }=\frac{ -4-16 }{8}=\frac{-20}{8}=- \frac{5}{2}=-2.5 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-4+\sqrt{256}}{2\cdot 4 }=\frac{ -4+16}{8}=\frac{ 12}{8}= \frac{3}{2}= 1.5\\\\ Quadratic \ Equation[/tex]