Answered

Makakuha ng detalyadong mga sagot sa lahat ng iyong tanong sa IDNStudy.com. Magtanong at makatanggap ng maaasahang sagot mula sa aming dedikadong komunidad ng mga eksperto.

If you are to solve each of the following quadratic equations, which method would you use and why? Explain your answer.
a. 9x2 = 225 d. 2x2 + x – 28 = 0

b. 4x2 – 121 = 0 e. 4x2 + 16x + 15 = 0

c. x2 + 11x + 30 = 0 f. 4x2 + 4x – 15 = 0


Sagot :

a. Factoring - since the it can be factored to (3x - 5)(3x + 5) by Binomial Theorem. b. Factoring - binomial theorem is also applied (2x - 11)(2x + 11) c. Quadratic Equation - can not be factored easily d. Factoring - can be factored (2x - 7)(x + 4) e. Factoring - can be factored (2x + 3)(2x + 5) f. Factoring - can be factored (2x - 3)(2x + 5)
[tex]a.\\ 9x^2 = 225 \\9x^2-225=0\\(3x)^2-15^2=0\\(3x-15)(3x+15)=0 \\3x-15=0\ \ or\ \ 3x+15 =0 \\3x=15 \ \ or \ \ 3x=-15 \\x= 3 \ \ or\ \ x=-3\\ \\Factoring : \ a^2-b^2=(a-b)(a+b)[/tex]

[tex]b.\\\\ 4x^2 - 121 = 0\\(2x)^2-11^2 =0\\(2x-11)(2x+11)=0 \\\\2x-11=0 \ \ or \ \ 2x+11=0 \\2x=11 \ \ or \ \ 2x=-11\\ x=\frac{11}{2} \ \ or \ \ x=-\frac{11}{2} \\ x=5.5 \ \ or \ \ x=-5.5 \\Factoring[/tex]

[tex]c.\\\\ x^2 + 11x + 30 = 0 \\a=1, \ \ b=11, \ \c=30 \\\\ \Delta =b^2-4ac = 11^2 -4\cdot1\cdot 30 = 121-120=1 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-11-\sqrt{1 }}{2 }=\frac{ -11-1}{2}=\frac{-12}{2}=-6 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a}=\frac{-11+\sqrt{1 }}{2 }=\frac{ -11+1}{2}=\frac{-10}{2}=-5\\\\ Quadratic \ Equation - can \ not \ be \ easily \ decomposed \ into \ factors[/tex]
 
[tex]d.\\\\ 2x^2 + x - 28 = 0 \\a=2, \ \ b=1 , \ \c=-28 \\\\ \Delta =b^2-4ac = 1^2 -4\cdot2\cdot (-28) = 1+224=225 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-1-\sqrt{225}}{2\cdot 2 }=\frac{ -1-15}{4}=\frac{-16}{4}=-4 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-1+\sqrt{225}}{2\cdot 2 }=\frac{ -1+15}{4}=\frac{ 14}{4}= 3.5\\\\ Quadratic \ Equation[/tex]

[tex]e. \\\\4x^2 + 16x + 15 = 0 \\a=4, \ \ b=16 , \ \c=15 \\\\ \Delta =b^2-4ac = 16^2 -4\cdot4\cdot 15 = 256-240=16 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-16-\sqrt{16}}{2\cdot 4 }=\frac{ -16-4}{8}=\frac{-20}{8}=- \frac{5}{2}=-2.5 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-16+\sqrt{16}}{2\cdot 4 }=\frac{ -16+4}{8}=\frac{-12}{8}=- \frac{3}{2}=-1.5\\\\ Quadratic \ Equation[/tex]

[tex]e.\\\\ 4x^2 + 4x - 15 = 0 \\a=4, \ \ b=4, \ \c=-15 \\\\ \Delta =b^2-4ac = 4^2 -4\cdot4\cdot (- 15 )= 16+240=256 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-4-\sqrt{256}}{2\cdot 4 }=\frac{ -4-16 }{8}=\frac{-20}{8}=- \frac{5}{2}=-2.5 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-4+\sqrt{256}}{2\cdot 4 }=\frac{ -4+16}{8}=\frac{ 12}{8}= \frac{3}{2}= 1.5\\\\ Quadratic \ Equation[/tex]