Makakuha ng maliwanag na mga sagot sa iyong mga tanong sa IDNStudy.com. Sumali sa aming platform upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.
Sagot :
a. Factoring - since the it can be factored to (3x - 5)(3x + 5) by Binomial Theorem.
b. Factoring - binomial theorem is also applied (2x - 11)(2x + 11)
c. Quadratic Equation - can not be factored easily
d. Factoring - can be factored (2x - 7)(x + 4)
e. Factoring - can be factored (2x + 3)(2x + 5)
f. Factoring - can be factored (2x - 3)(2x + 5)
[tex]a.\\ 9x^2 = 225 \\9x^2-225=0\\(3x)^2-15^2=0\\(3x-15)(3x+15)=0 \\3x-15=0\ \ or\ \ 3x+15 =0 \\3x=15 \ \ or \ \ 3x=-15 \\x= 3 \ \ or\ \ x=-3\\ \\Factoring : \ a^2-b^2=(a-b)(a+b)[/tex]
[tex]b.\\\\ 4x^2 - 121 = 0\\(2x)^2-11^2 =0\\(2x-11)(2x+11)=0 \\\\2x-11=0 \ \ or \ \ 2x+11=0 \\2x=11 \ \ or \ \ 2x=-11\\ x=\frac{11}{2} \ \ or \ \ x=-\frac{11}{2} \\ x=5.5 \ \ or \ \ x=-5.5 \\Factoring[/tex]
[tex]c.\\\\ x^2 + 11x + 30 = 0 \\a=1, \ \ b=11, \ \c=30 \\\\ \Delta =b^2-4ac = 11^2 -4\cdot1\cdot 30 = 121-120=1 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-11-\sqrt{1 }}{2 }=\frac{ -11-1}{2}=\frac{-12}{2}=-6 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a}=\frac{-11+\sqrt{1 }}{2 }=\frac{ -11+1}{2}=\frac{-10}{2}=-5\\\\ Quadratic \ Equation - can \ not \ be \ easily \ decomposed \ into \ factors[/tex]
[tex]d.\\\\ 2x^2 + x - 28 = 0 \\a=2, \ \ b=1 , \ \c=-28 \\\\ \Delta =b^2-4ac = 1^2 -4\cdot2\cdot (-28) = 1+224=225 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-1-\sqrt{225}}{2\cdot 2 }=\frac{ -1-15}{4}=\frac{-16}{4}=-4 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-1+\sqrt{225}}{2\cdot 2 }=\frac{ -1+15}{4}=\frac{ 14}{4}= 3.5\\\\ Quadratic \ Equation[/tex]
[tex]e. \\\\4x^2 + 16x + 15 = 0 \\a=4, \ \ b=16 , \ \c=15 \\\\ \Delta =b^2-4ac = 16^2 -4\cdot4\cdot 15 = 256-240=16 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-16-\sqrt{16}}{2\cdot 4 }=\frac{ -16-4}{8}=\frac{-20}{8}=- \frac{5}{2}=-2.5 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-16+\sqrt{16}}{2\cdot 4 }=\frac{ -16+4}{8}=\frac{-12}{8}=- \frac{3}{2}=-1.5\\\\ Quadratic \ Equation[/tex]
[tex]e.\\\\ 4x^2 + 4x - 15 = 0 \\a=4, \ \ b=4, \ \c=-15 \\\\ \Delta =b^2-4ac = 4^2 -4\cdot4\cdot (- 15 )= 16+240=256 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-4-\sqrt{256}}{2\cdot 4 }=\frac{ -4-16 }{8}=\frac{-20}{8}=- \frac{5}{2}=-2.5 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-4+\sqrt{256}}{2\cdot 4 }=\frac{ -4+16}{8}=\frac{ 12}{8}= \frac{3}{2}= 1.5\\\\ Quadratic \ Equation[/tex]
[tex]b.\\\\ 4x^2 - 121 = 0\\(2x)^2-11^2 =0\\(2x-11)(2x+11)=0 \\\\2x-11=0 \ \ or \ \ 2x+11=0 \\2x=11 \ \ or \ \ 2x=-11\\ x=\frac{11}{2} \ \ or \ \ x=-\frac{11}{2} \\ x=5.5 \ \ or \ \ x=-5.5 \\Factoring[/tex]
[tex]c.\\\\ x^2 + 11x + 30 = 0 \\a=1, \ \ b=11, \ \c=30 \\\\ \Delta =b^2-4ac = 11^2 -4\cdot1\cdot 30 = 121-120=1 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-11-\sqrt{1 }}{2 }=\frac{ -11-1}{2}=\frac{-12}{2}=-6 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a}=\frac{-11+\sqrt{1 }}{2 }=\frac{ -11+1}{2}=\frac{-10}{2}=-5\\\\ Quadratic \ Equation - can \ not \ be \ easily \ decomposed \ into \ factors[/tex]
[tex]d.\\\\ 2x^2 + x - 28 = 0 \\a=2, \ \ b=1 , \ \c=-28 \\\\ \Delta =b^2-4ac = 1^2 -4\cdot2\cdot (-28) = 1+224=225 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-1-\sqrt{225}}{2\cdot 2 }=\frac{ -1-15}{4}=\frac{-16}{4}=-4 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-1+\sqrt{225}}{2\cdot 2 }=\frac{ -1+15}{4}=\frac{ 14}{4}= 3.5\\\\ Quadratic \ Equation[/tex]
[tex]e. \\\\4x^2 + 16x + 15 = 0 \\a=4, \ \ b=16 , \ \c=15 \\\\ \Delta =b^2-4ac = 16^2 -4\cdot4\cdot 15 = 256-240=16 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-16-\sqrt{16}}{2\cdot 4 }=\frac{ -16-4}{8}=\frac{-20}{8}=- \frac{5}{2}=-2.5 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-16+\sqrt{16}}{2\cdot 4 }=\frac{ -16+4}{8}=\frac{-12}{8}=- \frac{3}{2}=-1.5\\\\ Quadratic \ Equation[/tex]
[tex]e.\\\\ 4x^2 + 4x - 15 = 0 \\a=4, \ \ b=4, \ \c=-15 \\\\ \Delta =b^2-4ac = 4^2 -4\cdot4\cdot (- 15 )= 16+240=256 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-4-\sqrt{256}}{2\cdot 4 }=\frac{ -4-16 }{8}=\frac{-20}{8}=- \frac{5}{2}=-2.5 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-4+\sqrt{256}}{2\cdot 4 }=\frac{ -4+16}{8}=\frac{ 12}{8}= \frac{3}{2}= 1.5\\\\ Quadratic \ Equation[/tex]
Maraming salamat sa iyong kontribusyon. Patuloy na magbahagi ng impormasyon at karanasan. Sama-sama tayong magtatagumpay sa ating layunin. Salamat sa pagpili sa IDNStudy.com. Umaasa kami na makita ka ulit para sa mas maraming solusyon.