Answered

Suriin ang IDNStudy.com para sa mabilis at kaugnay na mga sagot. Tuklasin ang mga kumpletong sagot sa iyong mga tanong mula sa aming komunidad ng mga eksperto.

If you are to solve each of the following quadratic equations, which method would you use and why? Explain your answer.
a. 9x2 = 225 d. 2x2 + x – 28 = 0

b. 4x2 – 121 = 0 e. 4x2 + 16x + 15 = 0

c. x2 + 11x + 30 = 0 f. 4x2 + 4x – 15 = 0


Sagot :

a. Factoring - since the it can be factored to (3x - 5)(3x + 5) by Binomial Theorem. b. Factoring - binomial theorem is also applied (2x - 11)(2x + 11) c. Quadratic Equation - can not be factored easily d. Factoring - can be factored (2x - 7)(x + 4) e. Factoring - can be factored (2x + 3)(2x + 5) f. Factoring - can be factored (2x - 3)(2x + 5)
[tex]a.\\ 9x^2 = 225 \\9x^2-225=0\\(3x)^2-15^2=0\\(3x-15)(3x+15)=0 \\3x-15=0\ \ or\ \ 3x+15 =0 \\3x=15 \ \ or \ \ 3x=-15 \\x= 3 \ \ or\ \ x=-3\\ \\Factoring : \ a^2-b^2=(a-b)(a+b)[/tex]

[tex]b.\\\\ 4x^2 - 121 = 0\\(2x)^2-11^2 =0\\(2x-11)(2x+11)=0 \\\\2x-11=0 \ \ or \ \ 2x+11=0 \\2x=11 \ \ or \ \ 2x=-11\\ x=\frac{11}{2} \ \ or \ \ x=-\frac{11}{2} \\ x=5.5 \ \ or \ \ x=-5.5 \\Factoring[/tex]

[tex]c.\\\\ x^2 + 11x + 30 = 0 \\a=1, \ \ b=11, \ \c=30 \\\\ \Delta =b^2-4ac = 11^2 -4\cdot1\cdot 30 = 121-120=1 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-11-\sqrt{1 }}{2 }=\frac{ -11-1}{2}=\frac{-12}{2}=-6 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a}=\frac{-11+\sqrt{1 }}{2 }=\frac{ -11+1}{2}=\frac{-10}{2}=-5\\\\ Quadratic \ Equation - can \ not \ be \ easily \ decomposed \ into \ factors[/tex]
 
[tex]d.\\\\ 2x^2 + x - 28 = 0 \\a=2, \ \ b=1 , \ \c=-28 \\\\ \Delta =b^2-4ac = 1^2 -4\cdot2\cdot (-28) = 1+224=225 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-1-\sqrt{225}}{2\cdot 2 }=\frac{ -1-15}{4}=\frac{-16}{4}=-4 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-1+\sqrt{225}}{2\cdot 2 }=\frac{ -1+15}{4}=\frac{ 14}{4}= 3.5\\\\ Quadratic \ Equation[/tex]

[tex]e. \\\\4x^2 + 16x + 15 = 0 \\a=4, \ \ b=16 , \ \c=15 \\\\ \Delta =b^2-4ac = 16^2 -4\cdot4\cdot 15 = 256-240=16 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-16-\sqrt{16}}{2\cdot 4 }=\frac{ -16-4}{8}=\frac{-20}{8}=- \frac{5}{2}=-2.5 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-16+\sqrt{16}}{2\cdot 4 }=\frac{ -16+4}{8}=\frac{-12}{8}=- \frac{3}{2}=-1.5\\\\ Quadratic \ Equation[/tex]

[tex]e.\\\\ 4x^2 + 4x - 15 = 0 \\a=4, \ \ b=4, \ \c=-15 \\\\ \Delta =b^2-4ac = 4^2 -4\cdot4\cdot (- 15 )= 16+240=256 \\ \\x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-4-\sqrt{256}}{2\cdot 4 }=\frac{ -4-16 }{8}=\frac{-20}{8}=- \frac{5}{2}=-2.5 \\\\ x_{2}=\frac{-b+\sqrt{\Delta} }{2a} =\frac{-4+\sqrt{256}}{2\cdot 4 }=\frac{ -4+16}{8}=\frac{ 12}{8}= \frac{3}{2}= 1.5\\\\ Quadratic \ Equation[/tex]