IDNStudy.com, ang iyong destinasyon para sa mga maaasahang sagot. Sumali sa aming platform upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

Find the sum of all positive 2-digit integer that are divisible by each of their digits.

Sagot :

First, we need to find all numbers that satisfy the condition.
Represent each 2-digit number by  10x+y      (x is the tens digit, y is the units digit)

Condition: the number is divisible by each of its digits.

Divisible by x:
[tex] \frac{10x+y}{x}= 10 + \frac{y}{x} [/tex]  
 
[tex]10 +\frac{y}{x}[/tex] is a positive integer because it is the quotient.
This implies that [tex]\frac{y}{x}[/tex] is a positive integer as well. (a)

Let [tex]\frac{y}{x}=p[/tex]     (b)


Divisible by y: 
[tex] \frac{10x+y}{y}= \frac{10x}{y}+ 1 [/tex] 

[tex]\frac{10x}{y}+ 1 [/tex] is also a positive integer because it is the quotient.

But [tex]\frac{10x}{y}=\frac{10}{p}[/tex]  ,
So p should be a positive integer  [from (a)]  such that [tex]\frac{10}{p}[/tex] is a positive integer.

The only possible values for p are 1, 2, and 5.
Recall that p is the ratio between the ones and the tens digit [from (b)].

List of numbers when
p=1    {11, 22, 33, 44, 55, 66, 77, 88, 99}
p=2    {12, 24, 36, 48}
p=5    {15}

These are all the 2-digit positive integers that satisfy the condition.

The sum of all those numbers is 630.