Makakuha ng kaugnay na sagot sa lahat ng iyong katanungan sa IDNStudy.com. Makakuha ng hakbang-hakbang na mga gabay para sa lahat ng iyong teknikal na tanong mula sa mga miyembro ng aming komunidad na may kaalaman.
Sagot :
First, we need to find all numbers that satisfy the condition.
Represent each 2-digit number by 10x+y (x is the tens digit, y is the units digit)
Condition: the number is divisible by each of its digits.
Divisible by x:
[tex] \frac{10x+y}{x}= 10 + \frac{y}{x} [/tex]
[tex]10 +\frac{y}{x}[/tex] is a positive integer because it is the quotient.
This implies that [tex]\frac{y}{x}[/tex] is a positive integer as well. (a)
Let [tex]\frac{y}{x}=p[/tex] (b)
Divisible by y:
[tex] \frac{10x+y}{y}= \frac{10x}{y}+ 1 [/tex]
[tex]\frac{10x}{y}+ 1 [/tex] is also a positive integer because it is the quotient.
But [tex]\frac{10x}{y}=\frac{10}{p}[/tex] ,
So p should be a positive integer [from (a)] such that [tex]\frac{10}{p}[/tex] is a positive integer.
The only possible values for p are 1, 2, and 5.
Recall that p is the ratio between the ones and the tens digit [from (b)].
List of numbers when
p=1 {11, 22, 33, 44, 55, 66, 77, 88, 99}
p=2 {12, 24, 36, 48}
p=5 {15}
These are all the 2-digit positive integers that satisfy the condition.
The sum of all those numbers is 630.
Represent each 2-digit number by 10x+y (x is the tens digit, y is the units digit)
Condition: the number is divisible by each of its digits.
Divisible by x:
[tex] \frac{10x+y}{x}= 10 + \frac{y}{x} [/tex]
[tex]10 +\frac{y}{x}[/tex] is a positive integer because it is the quotient.
This implies that [tex]\frac{y}{x}[/tex] is a positive integer as well. (a)
Let [tex]\frac{y}{x}=p[/tex] (b)
Divisible by y:
[tex] \frac{10x+y}{y}= \frac{10x}{y}+ 1 [/tex]
[tex]\frac{10x}{y}+ 1 [/tex] is also a positive integer because it is the quotient.
But [tex]\frac{10x}{y}=\frac{10}{p}[/tex] ,
So p should be a positive integer [from (a)] such that [tex]\frac{10}{p}[/tex] is a positive integer.
The only possible values for p are 1, 2, and 5.
Recall that p is the ratio between the ones and the tens digit [from (b)].
List of numbers when
p=1 {11, 22, 33, 44, 55, 66, 77, 88, 99}
p=2 {12, 24, 36, 48}
p=5 {15}
These are all the 2-digit positive integers that satisfy the condition.
The sum of all those numbers is 630.
Salamat sa iyong pakikilahok. Patuloy na magbahagi ng iyong mga ideya at kasagutan. Ang iyong kaalaman ay mahalaga sa ating komunidad. Gawin mong pangunahing mapagkukunan ang IDNStudy.com para sa maasahang mga sagot. Nandito kami para sa iyo.