Sumali sa IDNStudy.com para sa detalyadong mga sagot sa iyong mga tanong. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng detalyadong sagot sa lahat ng iyong mga tanong.
Answer:
To find the solution set of the quadratic equation 6x^2 - 30 = 36, we first need to simplify the equation by moving all terms to one side to set it equal to zero.
Given equation: 6x^2 - 30 = 36
Subtract 36 from both sides:
6x^2 - 30 - 36 = 0
6x^2 - 66 = 0
Now, the equation is in the form ax^2 + bx + c = 0, where a = 6, b = 0, and c = -66.
The next step is to solve the quadratic equation. We can use the quadratic formula to find the solutions:
The quadratic formula is:
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
Substitute the values of a, b, and c into the formula:
x = \frac{-0 \pm \sqrt{0 - 4(6)(-66)}}{2(6)}
x = \frac{\pm \sqrt{1584}}{12}
x = \frac{\pm 2\sqrt{396}}{12}
x = \frac{\pm 2\sqrt{4 \times 99}}{12}
x = \frac{\pm 4\sqrt{99}}{12}
x = \frac{\pm 4\sqrt{9 \times 11}}{12}
x = \frac{\pm 4 \times 3\sqrt{11}}{12}
x = \frac{\pm 12\sqrt{11}}{12}
x = \pm \sqrt{11}
Therefore, the solution set of the equation 6x^2 - 30 = 36 is:
x = \pm \sqrt{11}