IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mabilis na sagot. Sumali sa aming komunidad ng mga bihasa upang makahanap ng mga sagot na kailangan mo sa anumang paksa o problema.

find the first of an arithmetic sequence whose a22=-44and d=2​

Sagot :

Answer:

To find the first term \( a_1 \) of an arithmetic sequence where the 22nd term \( a_{22} \) is \(-44\) and the common difference \( d \) is \( 2 \), we can use the formula for the \( n \)-th term of an arithmetic sequence:

\[

a_n = a_1 + (n - 1) \cdot d

\]

Here, \( a_{22} = -44 \), \( n = 22 \), and \( d = 2 \). Plug these values into the formula:

\[

a_{22} = a_1 + (22 - 1) \cdot d

\]

\[

-44 = a_1 + 21 \cdot 2

\]

\[

-44 = a_1 + 42

\]

To find \( a_1 \), solve for \( a_1 \):

\[

a_1 = -44 - 42

\]

\[

a_1 = -86

\]

So, the first term \( a_1 \) of the arithmetic sequence is \(-86\).

TAMA PO YAN ANSWER ☺️☺️