IDNStudy.com, ang iyong mapagkukunan para sa mabilis at eksaktong mga sagot. Anuman ang kahirapan ng iyong mga tanong, ang aming komunidad ay may mga sagot na kailangan mo.

find the first of an arithmetic sequence whose a22=-44and d=2​

Sagot :

Answer:

To find the first term \( a_1 \) of an arithmetic sequence where the 22nd term \( a_{22} \) is \(-44\) and the common difference \( d \) is \( 2 \), we can use the formula for the \( n \)-th term of an arithmetic sequence:

\[

a_n = a_1 + (n - 1) \cdot d

\]

Here, \( a_{22} = -44 \), \( n = 22 \), and \( d = 2 \). Plug these values into the formula:

\[

a_{22} = a_1 + (22 - 1) \cdot d

\]

\[

-44 = a_1 + 21 \cdot 2

\]

\[

-44 = a_1 + 42

\]

To find \( a_1 \), solve for \( a_1 \):

\[

a_1 = -44 - 42

\]

\[

a_1 = -86

\]

So, the first term \( a_1 \) of the arithmetic sequence is \(-86\).

TAMA PO YAN ANSWER ☺️☺️