IDNStudy.com, kung saan ang iyong mga tanong ay natutugunan ng mabilis na sagot. Makakuha ng mga sagot sa iyong mga tanong mula sa aming mga eksperto, handang magbigay ng mabilis at tiyak na solusyon.
Sagot :
It seems like there's a small typo in the equation you provided. The term `2x7` is unclear. I assume you meant to write `2x^2`. If that's correct, the equation should be:
\[ 2x^2 + 12x + 3 = 0 \]
Here's how you solve for \(x\) by completing the square:
1. **Divide the entire equation by the coefficient of \(x^2\) (which is 2 in this case):**
\[
\frac{2x^2 + 12x + 3}{2} = \frac{0}{2}
\]
Simplifying, we get:
\[
x^2 + 6x + \frac{3}{2} = 0
\]
2. **Move the constant term to the right side of the equation:**
\[
x^2 + 6x = -\frac{3}{2}
\]
3. **Complete the square:**
Take the coefficient of \(x\) (which is 6), divide it by 2, and square it:
\[
\left(\frac{6}{2}\right)^2 = 3^2 = 9
\]
Add this value to both sides of the equation:
\[
x^2 + 6x + 9 = -\frac{3}{2} + 9
\]
Simplify the right side:
\[
x^2 + 6x + 9 = \frac{-3 + 18}{2} = \frac{15}{2}
\]
4. **Express the left side as a perfect square:**
\[
(x + 3)^2 = \frac{15}{2}
\]
5. **Solve for \(x\):**
Take the square root of both sides:
\[
x + 3 = \pm \sqrt{\frac{15}{2}}
\]
Simplifying the square root:
\[
x + 3 = \pm \frac{\sqrt{30}}{2}
\]
Finally, solve for \(x\):
\[
x = -3 \pm \frac{\sqrt{30}}{2}
\]
So the solutions for \(x\) are:
\[
x = -3 + \frac{\sqrt{30}}{2} \quad \text{or} \quad x = -3 - \frac{\sqrt{30}}{2}
\]
\[ 2x^2 + 12x + 3 = 0 \]
Here's how you solve for \(x\) by completing the square:
1. **Divide the entire equation by the coefficient of \(x^2\) (which is 2 in this case):**
\[
\frac{2x^2 + 12x + 3}{2} = \frac{0}{2}
\]
Simplifying, we get:
\[
x^2 + 6x + \frac{3}{2} = 0
\]
2. **Move the constant term to the right side of the equation:**
\[
x^2 + 6x = -\frac{3}{2}
\]
3. **Complete the square:**
Take the coefficient of \(x\) (which is 6), divide it by 2, and square it:
\[
\left(\frac{6}{2}\right)^2 = 3^2 = 9
\]
Add this value to both sides of the equation:
\[
x^2 + 6x + 9 = -\frac{3}{2} + 9
\]
Simplify the right side:
\[
x^2 + 6x + 9 = \frac{-3 + 18}{2} = \frac{15}{2}
\]
4. **Express the left side as a perfect square:**
\[
(x + 3)^2 = \frac{15}{2}
\]
5. **Solve for \(x\):**
Take the square root of both sides:
\[
x + 3 = \pm \sqrt{\frac{15}{2}}
\]
Simplifying the square root:
\[
x + 3 = \pm \frac{\sqrt{30}}{2}
\]
Finally, solve for \(x\):
\[
x = -3 \pm \frac{\sqrt{30}}{2}
\]
So the solutions for \(x\) are:
\[
x = -3 + \frac{\sqrt{30}}{2} \quad \text{or} \quad x = -3 - \frac{\sqrt{30}}{2}
\]
Ang iyong aktibong pakikilahok ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbahagi ng iyong nalalaman. Sama-sama tayong lumikha ng isang komunidad ng karunungan. Sa IDNStudy.com, kami ay nangako na magbigay ng pinakamahusay na mga sagot. Salamat at sa muling pagkikita.