IDNStudy.com, kung saan nagtatagpo ang mga eksperto para sagutin ang iyong mga tanong. Ang aming komunidad ay nagbibigay ng eksaktong sagot upang matulungan kang maunawaan at malutas ang anumang problema.

answer manually GEOMETRIC MEANS
step by step
[tex]18 \sqrt{2} = \sqrt{3} .r ^{4 - 1}[/tex]


Sagot :

Given the equation:

[tex]18\sqrt{2} = \sqrt{3} \cdot r^{3}[/tex]

we aim to solve for ( r ).

Step 1: Simplify the Exponent

Simplify the exponent in the original equation.

[tex]18\sqrt{2} = \sqrt{3} \cdot r^3[/tex]

Step 2: Isolate ( r³)

Divide both sides of the equation by ( \sqrt{3}) to isolate ( r³):

[tex]r^3 = \frac{18\sqrt{2}}{\sqrt{3}}[/tex]

Step 3: Simplify the Fraction

Simplify the right-hand side of the equation. To do this, we need to simplify the fraction:

[tex]\frac{18\sqrt{2}}{\sqrt{3}}[/tex]

To simplify this, multiply the numerator and denominator by ( \sqrt{3} ):

[tex]\frac{18\sqrt{2}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{18\sqrt{2} \cdot \sqrt{3}}{3}[/tex]

This simplifies the expression:

[tex]\frac{18\sqrt{6}}{3}[/tex]

[tex]6\sqrt{6}[/tex]

So we now have:

[tex]r^3 = 6\sqrt{6}[/tex]

Step 4: Solve for ( r )

The value of ( r ) is:

[tex]r = \sqrt[3]{6\sqrt{6}}[/tex]