IDNStudy.com, ang iyong mapagkukunan para sa mabilis at maaasahang mga sagot. Ang aming platform ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.
Step-by-step explanation:
To find the 30th term of an arithmetic sequence, you can use the formula for the \( n \)-th term of the sequence:
\[ a_n = a + (n - 1) \cdot d \]
where:
- \( a \) is the first term,
- \( d \) is the common difference,
- \( n \) is the term number you want to find.
Given:
- \( a = 8 \)
- \( d = -5 \)
- \( n = 30 \)
Plug these values into the formula:
\[ a_{30} = 8 + (30 - 1) \cdot (-5) \]
\[ a_{30} = 8 + 29 \cdot (-5) \]
\[ a_{30} = 8 - 145 \]
\[ a_{30} = -137 \]
So, the 30th term is \(-137\).