IDNStudy.com, ang iyong mapagkukunan para sa mabilis at maaasahang mga sagot. Ang aming platform ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.

Find the 30th term if a=8 and d=-5

Sagot :

Step-by-step explanation:

To find the 30th term of an arithmetic sequence, you can use the formula for the \( n \)-th term of the sequence:

\[ a_n = a + (n - 1) \cdot d \]

where:

- \( a \) is the first term,

- \( d \) is the common difference,

- \( n \) is the term number you want to find.

Given:

- \( a = 8 \)

- \( d = -5 \)

- \( n = 30 \)

Plug these values into the formula:

\[ a_{30} = 8 + (30 - 1) \cdot (-5) \]

\[ a_{30} = 8 + 29 \cdot (-5) \]

\[ a_{30} = 8 - 145 \]

\[ a_{30} = -137 \]

So, the 30th term is \(-137\).