IDNStudy.com, ang perpektong platform para sa malinaw at eksaktong mga sagot. Anuman ang kahirapan ng iyong mga tanong, ang aming komunidad ay may mga sagot na kailangan mo.

Find the 30th term if a=8 and d=-5

Sagot :

Step-by-step explanation:

To find the 30th term of an arithmetic sequence, you can use the formula for the \( n \)-th term of the sequence:

\[ a_n = a + (n - 1) \cdot d \]

where:

- \( a \) is the first term,

- \( d \) is the common difference,

- \( n \) is the term number you want to find.

Given:

- \( a = 8 \)

- \( d = -5 \)

- \( n = 30 \)

Plug these values into the formula:

\[ a_{30} = 8 + (30 - 1) \cdot (-5) \]

\[ a_{30} = 8 + 29 \cdot (-5) \]

\[ a_{30} = 8 - 145 \]

\[ a_{30} = -137 \]

So, the 30th term is \(-137\).