IDNStudy.com, ang iyong gabay para sa malinaw at eksaktong mga sagot. Sumali sa aming komunidad ng mga bihasa upang makahanap ng mga sagot na kailangan mo sa anumang paksa o problema.
Sagot :
Answer:
The quadratic formula is given by the equation , where .
In this case, the quadratic equation you've provided is . Let's expand and simplify this equation.

1. Expand (x + 6)² :
(x + 6)² = x² + 12x + 36
2. Set up the equation:
x² + 12x + 36 = 12x
3. Subtract ( 12x ) from both sides:
x² + 12x + 36 - 12x = 12x - 12x
4. Simplify the equation:
x² + 36 = 0
So now we have a simplified quadratic equation:
x² + 36 = 0
To solve for ( x ), we isolate ( x²):
x² = -36
Since we have a negative number on the right side, the solutions will involve imaginary numbers. Taking the square root of both sides gives:
[tex]x = \pm \sqrt{-36}[/tex]
We know that \(
[tex]\sqrt{-36} = \sqrt{36} \cdot \sqrt{-1} \), and \: \( \sqrt{-1} \)[/tex]
is represented by the imaginary unit ( i ). Thus:
[tex]x = \pm 6i[/tex]
The solutions to the quadratic equation ( + 6)² = 12x ) are:
[tex] x = 6i \quad \text{and} \quad x = -6i[/tex]
These are the imaginary solutions to the given quadratic equation.
Salamat sa iyong pakikilahok. Huwag kalimutang magtanong at magbahagi ng iyong kaalaman. Ang iyong ambag ay napakahalaga sa aming komunidad. May mga katanungan ka? Ang IDNStudy.com ang may sagot. Bisitahin kami palagi para sa pinakabagong impormasyon.