Sumali sa IDNStudy.com at tuklasin ang komunidad ng pagbabahagi ng kaalaman. Ang aming komunidad ay handang magbigay ng malalim at praktikal na mga solusyon sa lahat ng iyong mga katanungan.

(3x-8) (x+2) = 2x²
[tex](3x - 8) (x + 2) = 2x {}^{2} [/tex]


Sagot :

Answer:

To solve the equation \((3x-8)(x+2) = 2x^2\), we can start by expanding the left-hand side:

\[

(3x - 8)(x + 2) = 3x(x + 2) - 8(x + 2)

\]

\[

= 3x^2 + 6x - 8x - 16

\]

\[

= 3x^2 - 2x - 16

\]

Now, we set the expanded form equal to the right-hand side of the original equation:

\[

3x^2 - 2x - 16 = 2x^2

\]

Next, we subtract \(2x^2\) from both sides to set the equation to zero:

\[

3x^2 - 2x - 16 - 2x^2 = 0

\]

\[

x^2 - 2x - 16 = 0

\]

Now we have a quadratic equation. We can solve for \(x\) using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), where \(a = 1\), \(b = -2\), and \(c = -16\):

\[

x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-16)}}{2(1)}

\]

\[

x = \frac{2 \pm \sqrt{4 + 64}}{2}

\]

\[

x = \frac{2 \pm \sqrt{68}}{2}

\]

\[

x = \frac{2 \pm 2\sqrt{17}}{2}

\]

\[

x = 1 \pm \sqrt{17}

\]

So, the solutions to the equation are:

\[

x = 1 + \sqrt{17} \quad \text{and} \quad x = 1 - \sqrt{17}

\]