Makahanap ng eksaktong solusyon sa iyong mga problema sa IDNStudy.com. Ang aming platform ay nagbibigay ng mga maaasahang sagot upang matulungan kang gumawa ng matalinong desisyon nang mabilis at madali.
Answer:
Understanding the Problem
Problem:
* Raise x to the negative one power.
* Set the result equal to x - 2.
Equation:
* x^(-1) = x - 2
Solving the Equation
To solve this equation, we can manipulate it to get a polynomial equation and then find its roots.
Step 1: Convert to a fraction
* x^(-1) is equivalent to 1/x.
* So, the equation becomes: 1/x = x - 2
Step 2: Clear the fraction
* Multiply both sides by x:
* 1 = x^2 - 2x
Step 3: Rearrange into a quadratic equation
* Subtract 1 from both sides:
* x^2 - 2x - 1 = 0
Step 4: Solve the quadratic equation
* This equation cannot be easily factored, so we'll use the quadratic formula:
* x = [-b ± sqrt(b^2 - 4ac)] / (2a)
* Where a = 1, b = -2, and c = -1
* Plugging in the values, we get:
* x = [2 ± sqrt((-2)^2 - 4(1)(-1))] / (2*1)
* x = [2 ± sqrt(8)] / 2
* x = 1 ± sqrt(2)
Solutions:
* x = 1 + sqrt(2)
* x = 1 - sqrt(2)
Therefore, the solutions to the equation x^(-1) = x - 2 are x = 1 + sqrt(2) and x = 1 - sqrt(2).