Makahanap ng mabilis at maaasahang mga solusyon sa iyong mga problema sa IDNStudy.com. Makakuha ng mga kumpletong sagot sa lahat ng iyong mga tanong mula sa aming network ng mga eksperto.

Determine the sum and product of the roots of each quadratic equation. show your solution

1. 3z² - 27 = 0?

2. z² + 8z +1 2 = 0?

3. 6z² - 10z - 16 = 0?

4. 12z² + 2 = 12z?

5. z(2z² + 3) = 3z + 1?


Sagot :

Answer:

1. (3z² - 27 = 0)

Rewriting in standard form:

[tex]3z^2 + 0z - 27 = 0 [/tex]

[tex]a = 3[/tex]

[tex]b = 0[/tex]

[tex]c = -27[/tex]

Sum of the roots:

[tex]\text{Sum} = -\frac{b}{a} = -\frac{0}{3} = 0 [/tex]

Product of the roots:

[tex]\text{Product} = \frac{c}{a} = \frac{-27}{3} = -9[/tex]

2. (z² + 8z + 12 = 0)

Already in standard form:

[tex]a = 1[/tex]

[tex]b = 8[/tex]

[tex]c = 12[/tex]

Sum of the roots:

[tex] \text{Sum} = -\frac{b}{a} = -\frac{8}{1} = -8[/tex]

Product of the roots:

[tex]\text{Product} = \frac{c}{a} = \frac{12}{1} = 12[/tex]

3. (6z² - 10z - 16 = 0)

Already in standard form:

[tex]a = 6[/tex]

[tex]b = -10[/tex]

[tex]c = -16[/tex]

Sum of the roots:

[tex]\text{Sum} = -\frac{b}{a} = -\frac{-10}{6} = \frac{10}{6} = \frac{5}{3}[/tex]

Product of the roots:

[tex]\text{Product} = \frac{c}{a} = \frac{-16}{6} = -\frac{8}{3}[/tex]

4. (12z² + 2 = 12z)

Rewriting in standard form:

[tex]12z^2 - 12z + 2 = 0[/tex]

[tex]a = 12[/tex]

[tex]b = -12[/tex]

[tex]c = 2[/tex]

Sum of the roots:

[tex]\text{Sum} = -\frac{b}{a} = -\frac{-12}{12} = 1[/tex]

Product of the roots:

[tex]\text{Product} = \frac{c}{a} = \frac{2}{12} = \frac{1}{6}[/tex]

5. (z(2z² + 3) = 3z + 1)

First, simplify the equation:

[tex]2z^3 + 3z = 3z + 1[/tex]

[tex]2z^3 + 3z - 3z - 1 = 0[/tex]

[tex]2z^3 - 1 = 0[/tex]

This simplifies to:

[tex]2z^3 = 1[/tex]

Since this is not a quadratic equation, we can't use the formulas for sum and product of the roots directly.

However, for the sake of completeness, considering only expressions of the form (az² + bz + c = 0):