Makahanap ng mabilis at maaasahang mga solusyon sa iyong mga problema sa IDNStudy.com. Makakuha ng mga kumpletong sagot sa lahat ng iyong mga tanong mula sa aming network ng mga eksperto.
Sagot :
Answer:
1. (3z² - 27 = 0)
Rewriting in standard form:
[tex]3z^2 + 0z - 27 = 0 [/tex]
[tex]a = 3[/tex]
[tex]b = 0[/tex]
[tex]c = -27[/tex]
Sum of the roots:
[tex]\text{Sum} = -\frac{b}{a} = -\frac{0}{3} = 0 [/tex]
Product of the roots:
[tex]\text{Product} = \frac{c}{a} = \frac{-27}{3} = -9[/tex]
2. (z² + 8z + 12 = 0)
Already in standard form:
[tex]a = 1[/tex]
[tex]b = 8[/tex]
[tex]c = 12[/tex]
Sum of the roots:
[tex] \text{Sum} = -\frac{b}{a} = -\frac{8}{1} = -8[/tex]
Product of the roots:
[tex]\text{Product} = \frac{c}{a} = \frac{12}{1} = 12[/tex]
3. (6z² - 10z - 16 = 0)
Already in standard form:
[tex]a = 6[/tex]
[tex]b = -10[/tex]
[tex]c = -16[/tex]
Sum of the roots:
[tex]\text{Sum} = -\frac{b}{a} = -\frac{-10}{6} = \frac{10}{6} = \frac{5}{3}[/tex]
Product of the roots:
[tex]\text{Product} = \frac{c}{a} = \frac{-16}{6} = -\frac{8}{3}[/tex]
4. (12z² + 2 = 12z)
Rewriting in standard form:
[tex]12z^2 - 12z + 2 = 0[/tex]
[tex]a = 12[/tex]
[tex]b = -12[/tex]
[tex]c = 2[/tex]
Sum of the roots:
[tex]\text{Sum} = -\frac{b}{a} = -\frac{-12}{12} = 1[/tex]
Product of the roots:
[tex]\text{Product} = \frac{c}{a} = \frac{2}{12} = \frac{1}{6}[/tex]
5. (z(2z² + 3) = 3z + 1)
First, simplify the equation:
[tex]2z^3 + 3z = 3z + 1[/tex]
[tex]2z^3 + 3z - 3z - 1 = 0[/tex]
[tex]2z^3 - 1 = 0[/tex]
This simplifies to:
[tex]2z^3 = 1[/tex]
Since this is not a quadratic equation, we can't use the formulas for sum and product of the roots directly.
However, for the sake of completeness, considering only expressions of the form (az² + bz + c = 0):
Salamat sa iyong pakikilahok. Patuloy na magbahagi ng iyong karanasan at kaalaman. Sama-sama tayong magtutulungan upang makamit ang ating mga layunin. Bumalik ka sa IDNStudy.com para sa maasahang mga sagot sa iyong mga katanungan. Salamat sa iyong tiwala.