Makahanap ng mabilis at maaasahang mga solusyon sa iyong mga problema sa IDNStudy.com. Ang aming mga eksperto ay nagbibigay ng mabilis at eksaktong sagot upang tulungan kang maunawaan at malutas ang anumang problema.
Sagot :
Answer:
⚠️ Don't copy like these < / p> < p > p >
[tex]1. \: \(1 \frac{3}{2} + 1 \frac{3}{5} [/tex]
[tex]1 \frac{3}{2} = 1 + \frac{3}{2} = \frac{5}{2}\\
1 \frac{3}{5} = 1 + \frac{3}{5} = \frac{8}{5}\\
\text{Convert to a common denominator:}\\
\frac{5}{2} = \frac{25}{10}\\
\frac{8}{5} = \frac{16}{10}\\
\frac{25}{10} + \frac{16}{10} = \frac{41}{10} = 4 \frac{1}{10} [/tex]
[tex]2. \: \(\frac{2}{11} + 2 \frac{1}{2} [/tex]
[tex]2 \frac{1}{2} = 2 + \frac{1}{2} = \frac{5}{2}\\
\text{Convert to a common denominator:}\\
\frac{2}{11} + \frac{5}{2} = \frac{2 \cdot 2 + 5 \cdot 11}{2 \cdot 11} = \frac{4 + 55}{22} = \frac{59}{22} = 2 \frac{15}{22} [/tex]
[tex]3. \: \(1 \frac{1}{3} + \frac{1}{5}[/tex]
[tex]1 \frac{1}{3} = 1 + \frac{1}{3} = \frac{4}{3}\\
\text{Convert to a common denominator:}\\
\frac{4}{3} + \frac{1}{5} = \frac{4 \cdot 5 + 1 \cdot 3}{3 \cdot 5} = \frac{20 + 3}{15} = \frac{23}{15} = 1 \frac{8}{15}[/tex]
[tex]4. \: \(2 \frac{3}{4} + \frac{2}{2}
[/tex]
[tex]2 \frac{3}{4} = 2 + \frac{3}{4} = \frac{11}{4}\\
\frac{2}{2} = 1\\
\frac{11}{4} + 1 = \frac{11}{4} + \frac{4}{4} = \frac{15}{4} = 3 \frac{3}{4}[/tex]
[tex]5. \: \(1 \frac{1}{2} + \frac{2}{3}[/tex]
[tex]1 \frac{1}{2} = 1 + \frac{1}{2} = \frac{3}{2}\\
\text{Convert to a common denominator:}\\
\frac{3}{2} + \frac{2}{3} = \frac{3 \cdot 3 + 2 \cdot 2}{2 \cdot 3} = \frac{9 + 4}{6} = \frac{13}{6} = 2 \frac{1}{6}[/tex]
[tex]6. \: \(3 \frac{1}{2} + \frac{4}{5}\)[/tex]
[tex]3 \frac{1}{2} = 3 + \frac{1}{2} = \frac{7}{2}\\
\text{Convert to a common denominator:}\\
\frac{7}{2} + \frac{4}{5} = \frac{7 \cdot 5 + 4 \cdot 2}{2 \cdot 5} = \frac{35 + 8}{10} = \frac{43}{10} = 4 \frac{3}{10}[/tex]
[tex]7. \: \(4 \frac{1}{4} + 2 \frac{1}{6}\)[/tex]
[tex]4 \frac{1}{4} = 4 + \frac{1}{4} = \frac{17}{4}\\
2 \frac{1}{6} = 2 + \frac{1}{6} = \frac{13}{6}\\
\text{Convert to a common denominator:}\\
\frac{17}{4} + \frac{13}{6} = \frac{17 \cdot 3 + 13 \cdot 2}{4 \cdot 6} = \frac{51 + 26}{24} = \frac{77}{24} = 3 \frac{5}{24}
[/tex]
[tex]8. \: \( \frac{5}{6} + 3 \frac{3}{7} \)[/tex]
[tex]3 \frac{3}{7} = 3 + \frac{3}{7} = \frac{24}{7} \\
\text{Convert to a common denominator:} \\
\frac{5}{6} + \frac{24}{7} = \frac{5 \cdot 7 + 24 \cdot 6}{6 \cdot 7} = \frac{35 + 144}{42} = \frac{179}{42} = 4 \frac{11}{42}[/tex]
[tex]9. \: \( 5 \frac{2}{5} + 2 \frac{1}{4} \)[/tex]
[tex]5 \frac{2}{5} = 5 + \frac{2}{5} = \frac{27}{5} \\
2 \frac{1}{4} = 2 + \frac{1}{4} = \frac{9}{4} \\
\text{Convert to a common denominator:} \\
\frac{27}{5} + \frac{9}{4} = \frac{27 \cdot 4 + 9 \cdot 5}{5 \cdot 4} = \frac{108 + 45}{20} = \frac{153}{20} = 7 \frac{13}{20}[/tex]
[tex]10. \: \( 20 \times 3 \frac{1}{9} + \frac{2}{3} \)[/tex]
[tex]3 \frac{1}{9} = 3 + \frac{1}{9} = \frac{28}{9} \\
\text{Multiply by 20:} \\
20 \times \frac{28}{9} = \frac{560}{9} \\
\text{Then add } \frac{2}{3}: \\
\frac{560}{9} + \frac{2}{3} = \frac{560 \cdot 3 + 2 \cdot 9}{9 \cdot 3} = \frac{1680 + 18}{27} = \frac{1698}{27} = 62 \frac{24}{27}[/tex]
[tex]1. \: \(1 \frac{3}{2} + 1 \frac{3}{5} = 4 \frac{1}{10}[/tex]
[tex]2. \: \(\frac{2}{11} + 2 \frac{1}{2} = 2 \frac{15}{22}[/tex]
[tex]3. \: \(1 \frac{1}{3} + \frac{1}{5} = 1 \frac{8}{15}[/tex]
[tex]4. \: \(2 \frac{3}{4} + \frac{2}{2} = 3 \frac{3}{4}[/tex]
[tex]5. \: \(1 \frac{1}{2} + \frac{2}{3} = 2 \frac{1}{6}[/tex]
[tex]6. \: \(3 \frac{1}{2} + \frac{4}{5} = 4 \frac{3}{10}[/tex]
[tex]7. \: \(4 \frac{1}{4} + 2 \frac{1}{6} = 3 \frac{5}{24}[/tex]
[tex]8. \: \( \frac{5}{6} + 3 \frac{3}{7} = 4 \frac{11}{42}[/tex]
[tex]9. \: \(5 \frac{2}{5} + 2 \frac{1}{4} = 7 \frac{13}{20}[/tex]
[tex]10. \: \(20 \times 3 \frac{1}{9} + \frac{2}{3} = 62 \frac{24}{27}[/tex]
Maraming salamat sa iyong kontribusyon. Huwag kalimutang bumalik at magtanong ng mga bagong bagay. Ang iyong kaalaman ay napakahalaga sa ating komunidad. Bumalik ka sa IDNStudy.com para sa maasahang mga sagot sa iyong mga katanungan. Salamat sa iyong tiwala.