Makahanap ng mga solusyon sa iyong mga problema gamit ang IDNStudy.com. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng detalyadong sagot sa lahat ng iyong mga tanong.
Sagot :
Step-by-step explanation:
To find the first five terms of an arithmetic sequence, we need to determine the common difference \( d \) and the first term \( a_1 \). We know the 4th term (\( a_4 \)) is -1 and the 6th term (\( a_6 \)) is 9.
In an arithmetic sequence, the \( n \)-th term is given by:
\[ a_n = a_1 + (n - 1)d \]
Using the information provided:
1. For the 4th term: \( a_4 = a_1 + 3d = -1 \)
2. For the 6th term: \( a_6 = a_1 + 5d = 9 \)
Now, we can solve these two equations to find \( a_1 \) and \( d \):
**Step 1:** Subtract the first equation from the second to find \( d \):
\[ (a_1 + 5d) - (a_1 + 3d) = 9 - (-1) \]
\[ 2d = 10 \]
\[ d = 5 \]
**Step 2:** Substitute \( d \) back into the first equation to find \( a_1 \):
\[ a_1 + 3(5) = -1 \]
\[ a_1 + 15 = -1 \]
\[ a_1 = -1 - 15 \]
\[ a_1 = -16 \]
Now, we have the first term \( a_1 = -16 \) and the common difference \( d = 5 \). Let's find the first five terms:
1. **First term (\( a_1 \))**: \(-16\)
2. **Second term (\( a_2 \))**: \( a_1 + d = -16 + 5 = -11 \)
3. **Third term (\( a_3 \))**: \( a_1 + 2d = -16 + 10 = -6 \)
4. **Fourth term (\( a_4 \))**: \( a_1 + 3d = -16 + 15 = -1 \)
5. **Fifth term (\( a_5 \))**: \( a_1 + 4d = -16 + 20 = 4 \)
So, the first five terms of the sequence are: \(-16, -11, -6, -1, 4\).
Maraming salamat sa iyong pakikilahok. Huwag kalimutang bumalik at magtanong ng mga bagong bagay. Ang iyong kaalaman ay mahalaga sa ating komunidad. Bawat tanong ay may sagot sa IDNStudy.com. Salamat at sa muling pagkikita para sa mas maraming solusyon.