Makakuha ng detalyadong mga sagot sa iyong mga tanong gamit ang IDNStudy.com. Magtanong at makatanggap ng maaasahang sagot mula sa aming dedikadong komunidad ng mga eksperto.

Given a right triangle ABC where the legs AB and BC are equal to 5 and 3, respectively; a line AD was drawn, where point D is along the segment BC, bisects the angle at A. Find the length of segment BD.

Sagot :

Answer:

Final Answer

The length of segment ( BD ) is:

[tex]BD = \frac{5\sqrt{34} - 25}{3}[/tex]

Step-by-step explanation:

Step 1:

[tex]- \( \angle ACB \) \: is \: the \: right \: angle.[/tex]

[tex]- \( AD \) \: is \: the \: angle \: bisector \: of \: \( \angle BAC \), and \: it \: intersects \: \( BC \) \: at \: point \: \( D \).

[/tex]

Step 2:

Using the Pythagorean theorem:

[tex]{AC = \sqrt{AB^2 + BC^2} = \sqrt{5^2 + 3^2} = \sqrt{25 + 9} = \sqrt{34}}[/tex]

Step 3:

[tex]\frac{BD}{DC} = \frac{AB}{AC}[/tex]

Step 4:

[tex] \frac{x}{3 - x} = \frac{5}{\sqrt{34}}[/tex]

Step 5:

[tex]x \sqrt{34} = 5 (3 - x)[/tex]

[tex]x \sqrt{34} = 15 - 5x[/tex]

[tex]x \sqrt{34} + 5x = 15[/tex]

[tex]x (\sqrt{34} + 5) = 15[/tex]

[tex]x = \frac{15}{\sqrt{34} + 5}[/tex]

Step 6: Rationalize the denominator

[tex]{x = \frac{15}{\sqrt{34} + 5} \times \frac{\sqrt{34} - 5}{\sqrt{34} - 5} = \frac{15(\sqrt{34} - 5)}{34 - 25} = \frac{15(\sqrt{34} - 5)}{9}} [/tex]

[tex]{x = \frac{15\sqrt{34} - 75}{9} = \frac{15}{9} \sqrt{34} - \frac{75}{9} = \frac{5}{3} \sqrt{34} - \frac{25}{3}}[/tex]