Makakuha ng mga sagot mula sa komunidad at mga eksperto sa IDNStudy.com. Tuklasin ang mga kumpletong sagot sa iyong mga tanong mula sa aming komunidad ng mga eksperto.

arithmetic means between - 4 and 16​

Sagot :

The (n+2) term of an arithmetic progression can be given by the formula:

[tex]\[ a_{n+2} = a + (n+1)d \][/tex]

Given:

[tex]a = -4[/tex]

[tex]l = 16 [/tex]

[tex]a_{n+2} = l = 16[/tex]

We can write:

[tex]16 = -4 + (n+1)d[/tex]

[tex]16 + 4 = (n+1)d[/tex]

[tex]20 = (n+1)d[/tex]

Case 1: Inserting 2 Arithmetic Means

lnsert (2) arithmetic means (n = 2):

[tex]20 = (2+1)d[/tex]

[tex]20 = 3d[/tex]

[tex]d = \frac{20}{3} = \frac{20}{3} \approx 6.67[/tex]

The sequence in this case is:

[tex]-4, -4 + \frac{20}{3}, -4 + 2 \left(\frac{20}{3}\right), 16[/tex]

Simplifying:

[tex]{-4, \frac{-4+20}{3} = \frac{16}{3} \approx 5.33, \frac{-4+40}{3} = \frac{36}{3} = 12, 16}[/tex]

Case 2: Inserting 3 Arithmetic Means

lnsert (3) arithmetic means (n = 3):

[tex]20 = (3+1)d[/tex]

[tex]20 = 4d[/tex]

[tex]d = \frac{20}{4} = 5[/tex]

The sequence in this case is:

[tex]{-4, -4 + 5, -4 + 2 \cdot 5, -4 + 3 \cdot 5, 16}[/tex]

Simplifying:

[tex]-4, 1, 6, 11, 16 [/tex]

General Formula

In general, if you want (n) arithmetic means, the common difference (d) is:

[tex]d = \frac{20}{n+1}[/tex]

And the arithmetic means are:

[tex]a, a + d, a + 2d, \ldots, a + nd[/tex]

Let's consider one more example.

Case 3: Inserting 4 Arithmetic Means

Insert (4) arithmetic means (n = 4):

[tex]20 = (4+1)d[/tex]

[tex]20 = 5d[/tex]

[tex]d = \frac{20}{5} = 4[/tex]

The sequence in this case is:

[tex]{-4, -4 + 4, -4 + 2 \cdot 4, -4 + 3 \cdot 4, -4 + 4 \cdot 4, 16}[/tex]

Simplifying:

[tex]-4, 0, 4, 8, 12, 16[/tex]