IDNStudy.com, ang perpektong platform para sa eksaktong at maaasahang mga sagot. Hanapin ang impormasyon na kailangan mo nang mabilis at madali sa pamamagitan ng aming komprehensibo at eksaktong platform ng tanong at sagot.
Sagot :
The (n+2) term of an arithmetic progression can be given by the formula:
[tex]\[ a_{n+2} = a + (n+1)d \][/tex]
Given:
[tex]a = -4[/tex]
[tex]l = 16 [/tex]
[tex]a_{n+2} = l = 16[/tex]
We can write:
[tex]16 = -4 + (n+1)d[/tex]
[tex]16 + 4 = (n+1)d[/tex]
[tex]20 = (n+1)d[/tex]
Case 1: Inserting 2 Arithmetic Means
lnsert (2) arithmetic means (n = 2):
[tex]20 = (2+1)d[/tex]
[tex]20 = 3d[/tex]
[tex]d = \frac{20}{3} = \frac{20}{3} \approx 6.67[/tex]
The sequence in this case is:
[tex]-4, -4 + \frac{20}{3}, -4 + 2 \left(\frac{20}{3}\right), 16[/tex]
Simplifying:
[tex]{-4, \frac{-4+20}{3} = \frac{16}{3} \approx 5.33, \frac{-4+40}{3} = \frac{36}{3} = 12, 16}[/tex]
Case 2: Inserting 3 Arithmetic Means
lnsert (3) arithmetic means (n = 3):
[tex]20 = (3+1)d[/tex]
[tex]20 = 4d[/tex]
[tex]d = \frac{20}{4} = 5[/tex]
The sequence in this case is:
[tex]{-4, -4 + 5, -4 + 2 \cdot 5, -4 + 3 \cdot 5, 16}[/tex]
Simplifying:
[tex]-4, 1, 6, 11, 16 [/tex]
General Formula
In general, if you want (n) arithmetic means, the common difference (d) is:
[tex]d = \frac{20}{n+1}[/tex]
And the arithmetic means are:
[tex]a, a + d, a + 2d, \ldots, a + nd[/tex]
Let's consider one more example.
Case 3: Inserting 4 Arithmetic Means
Insert (4) arithmetic means (n = 4):
[tex]20 = (4+1)d[/tex]
[tex]20 = 5d[/tex]
[tex]d = \frac{20}{5} = 4[/tex]
The sequence in this case is:
[tex]{-4, -4 + 4, -4 + 2 \cdot 4, -4 + 3 \cdot 4, -4 + 4 \cdot 4, 16}[/tex]
Simplifying:
[tex]-4, 0, 4, 8, 12, 16[/tex]
Salamat sa iyong aktibong pakikilahok. Patuloy na magbahagi ng impormasyon at kasagutan. Sama-sama tayong lumikha ng isang masiglang komunidad ng pagkatuto. Salamat sa pagbisita sa IDNStudy.com. Bumalik ka ulit para sa mga sagot sa iyong mga katanungan.