Makakuha ng mga sagot mula sa komunidad at mga eksperto sa IDNStudy.com. Tuklasin ang mga kumpletong sagot sa iyong mga tanong mula sa aming komunidad ng mga eksperto.
Sagot :
The (n+2) term of an arithmetic progression can be given by the formula:
[tex]\[ a_{n+2} = a + (n+1)d \][/tex]
Given:
[tex]a = -4[/tex]
[tex]l = 16 [/tex]
[tex]a_{n+2} = l = 16[/tex]
We can write:
[tex]16 = -4 + (n+1)d[/tex]
[tex]16 + 4 = (n+1)d[/tex]
[tex]20 = (n+1)d[/tex]
Case 1: Inserting 2 Arithmetic Means
lnsert (2) arithmetic means (n = 2):
[tex]20 = (2+1)d[/tex]
[tex]20 = 3d[/tex]
[tex]d = \frac{20}{3} = \frac{20}{3} \approx 6.67[/tex]
The sequence in this case is:
[tex]-4, -4 + \frac{20}{3}, -4 + 2 \left(\frac{20}{3}\right), 16[/tex]
Simplifying:
[tex]{-4, \frac{-4+20}{3} = \frac{16}{3} \approx 5.33, \frac{-4+40}{3} = \frac{36}{3} = 12, 16}[/tex]
Case 2: Inserting 3 Arithmetic Means
lnsert (3) arithmetic means (n = 3):
[tex]20 = (3+1)d[/tex]
[tex]20 = 4d[/tex]
[tex]d = \frac{20}{4} = 5[/tex]
The sequence in this case is:
[tex]{-4, -4 + 5, -4 + 2 \cdot 5, -4 + 3 \cdot 5, 16}[/tex]
Simplifying:
[tex]-4, 1, 6, 11, 16 [/tex]
General Formula
In general, if you want (n) arithmetic means, the common difference (d) is:
[tex]d = \frac{20}{n+1}[/tex]
And the arithmetic means are:
[tex]a, a + d, a + 2d, \ldots, a + nd[/tex]
Let's consider one more example.
Case 3: Inserting 4 Arithmetic Means
Insert (4) arithmetic means (n = 4):
[tex]20 = (4+1)d[/tex]
[tex]20 = 5d[/tex]
[tex]d = \frac{20}{5} = 4[/tex]
The sequence in this case is:
[tex]{-4, -4 + 4, -4 + 2 \cdot 4, -4 + 3 \cdot 4, -4 + 4 \cdot 4, 16}[/tex]
Simplifying:
[tex]-4, 0, 4, 8, 12, 16[/tex]
Pinahahalagahan namin ang bawat ambag mo. Huwag kalimutang bumalik at magtanong ng mga bagong bagay. Ang iyong kaalaman ay napakahalaga sa ating komunidad. Ang IDNStudy.com ang iyong mapagkakatiwalaang mapagkukunan ng mga sagot. Salamat at bumalik ka ulit.