IDNStudy.com, ang perpektong platform para sa eksaktong at maaasahang mga sagot. Hanapin ang impormasyon na kailangan mo nang mabilis at madali sa pamamagitan ng aming komprehensibo at eksaktong platform ng tanong at sagot.

arithmetic means between - 4 and 16​

Sagot :

The (n+2) term of an arithmetic progression can be given by the formula:

[tex]\[ a_{n+2} = a + (n+1)d \][/tex]

Given:

[tex]a = -4[/tex]

[tex]l = 16 [/tex]

[tex]a_{n+2} = l = 16[/tex]

We can write:

[tex]16 = -4 + (n+1)d[/tex]

[tex]16 + 4 = (n+1)d[/tex]

[tex]20 = (n+1)d[/tex]

Case 1: Inserting 2 Arithmetic Means

lnsert (2) arithmetic means (n = 2):

[tex]20 = (2+1)d[/tex]

[tex]20 = 3d[/tex]

[tex]d = \frac{20}{3} = \frac{20}{3} \approx 6.67[/tex]

The sequence in this case is:

[tex]-4, -4 + \frac{20}{3}, -4 + 2 \left(\frac{20}{3}\right), 16[/tex]

Simplifying:

[tex]{-4, \frac{-4+20}{3} = \frac{16}{3} \approx 5.33, \frac{-4+40}{3} = \frac{36}{3} = 12, 16}[/tex]

Case 2: Inserting 3 Arithmetic Means

lnsert (3) arithmetic means (n = 3):

[tex]20 = (3+1)d[/tex]

[tex]20 = 4d[/tex]

[tex]d = \frac{20}{4} = 5[/tex]

The sequence in this case is:

[tex]{-4, -4 + 5, -4 + 2 \cdot 5, -4 + 3 \cdot 5, 16}[/tex]

Simplifying:

[tex]-4, 1, 6, 11, 16 [/tex]

General Formula

In general, if you want (n) arithmetic means, the common difference (d) is:

[tex]d = \frac{20}{n+1}[/tex]

And the arithmetic means are:

[tex]a, a + d, a + 2d, \ldots, a + nd[/tex]

Let's consider one more example.

Case 3: Inserting 4 Arithmetic Means

Insert (4) arithmetic means (n = 4):

[tex]20 = (4+1)d[/tex]

[tex]20 = 5d[/tex]

[tex]d = \frac{20}{5} = 4[/tex]

The sequence in this case is:

[tex]{-4, -4 + 4, -4 + 2 \cdot 4, -4 + 3 \cdot 4, -4 + 4 \cdot 4, 16}[/tex]

Simplifying:

[tex]-4, 0, 4, 8, 12, 16[/tex]