Makakuha ng kaugnay na sagot sa lahat ng iyong katanungan sa IDNStudy.com. Tuklasin ang mga maaasahang impormasyon sa anumang paksa sa pamamagitan ng aming network ng bihasang mga propesyonal.
1. Identify the center of the circle: The center is given as (-6, -3), so let the center be denoted as (h, k).
2. Determine the radius: The radius (r) is the distance from the center to the given point, which in this case is (-10, 3). We use the distance formula to calculate (r):
[tex]r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]
[tex]{r = \sqrt{(-10 - (-6))^2 + (3 - (-3))^2} = \sqrt{(-10 + 6)^2 + (3 + 3)^2} = \sqrt{(-4)^2 + (6)^2} = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13}}[/tex]
3. Write the equation of the circle in standard form: The equation of a circle with center (h, k) and radius (r) is given by:
[tex](x - h)^2 + (y - k)^2 = r^2[/tex]
[tex] \(h = -6\), \(k = -3\), and \: \(r = 2\sqrt{13}\):[/tex]
[tex](x + 6)^2 + (y + 3)^2 = (2\sqrt{13})^2[/tex]
[tex](2\sqrt{13})^2 = 4 \times 13 = 52[/tex]