Answered

IDNStudy.com, ang iyong platform ng sanggunian para sa pangkomunidad na mga sagot. Ang aming komunidad ay nagbibigay ng eksaktong sagot upang matulungan kang maunawaan at malutas ang anumang problema.

Find the equation, in standard form, of the circle being described in each item

22. center (-6, -3), through (-10, 3)


Sagot :

1. Identify the center of the circle: The center is given as (-6, -3), so let the center be denoted as (h, k).

2. Determine the radius: The radius (r) is the distance from the center to the given point, which in this case is (-10, 3). We use the distance formula to calculate (r):

[tex]r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]

Substituting the provided points:

[tex]{r = \sqrt{(-10 - (-6))^2 + (3 - (-3))^2} = \sqrt{(-10 + 6)^2 + (3 + 3)^2} = \sqrt{(-4)^2 + (6)^2} = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13}}[/tex]

3. Write the equation of the circle in standard form: The equation of a circle with center (h, k) and radius (r) is given by:

[tex](x - h)^2 + (y - k)^2 = r^2[/tex]

Substitute

[tex] \(h = -6\), \(k = -3\), and \: \(r = 2\sqrt{13}\):[/tex]

[tex](x + 6)^2 + (y + 3)^2 = (2\sqrt{13})^2[/tex]

Simplify (r²):

[tex](2\sqrt{13})^2 = 4 \times 13 = 52[/tex]

The equation of the circle in standard form is:

(x + 6)² + (y + 3)² = 52