Answered

Makakuha ng mabilis at eksaktong mga sagot sa IDNStudy.com. Makakuha ng mga sagot sa iyong mga tanong mula sa aming mga eksperto, handang magbigay ng mabilis at tiyak na solusyon.

Find the equation, in standard form, of the circle being described in each item

22. center (-6, -3), through (-10, 3)


Sagot :

1. Identify the center of the circle: The center is given as (-6, -3), so let the center be denoted as (h, k).

2. Determine the radius: The radius (r) is the distance from the center to the given point, which in this case is (-10, 3). We use the distance formula to calculate (r):

[tex]r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]

Substituting the provided points:

[tex]{r = \sqrt{(-10 - (-6))^2 + (3 - (-3))^2} = \sqrt{(-10 + 6)^2 + (3 + 3)^2} = \sqrt{(-4)^2 + (6)^2} = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13}}[/tex]

3. Write the equation of the circle in standard form: The equation of a circle with center (h, k) and radius (r) is given by:

[tex](x - h)^2 + (y - k)^2 = r^2[/tex]

Substitute

[tex] \(h = -6\), \(k = -3\), and \: \(r = 2\sqrt{13}\):[/tex]

[tex](x + 6)^2 + (y + 3)^2 = (2\sqrt{13})^2[/tex]

Simplify (r²):

[tex](2\sqrt{13})^2 = 4 \times 13 = 52[/tex]

The equation of the circle in standard form is:

(x + 6)² + (y + 3)² = 52

Pinahahalagahan namin ang bawat ambag mo. Huwag kalimutang bumalik at magtanong ng mga bagong bagay. Ang iyong kaalaman ay napakahalaga sa ating komunidad. Umaasa kami na natagpuan mo ang hinahanap mo sa IDNStudy.com. Bumalik ka para sa mas maraming solusyon!