Answered

IDNStudy.com, ang iyong destinasyon para sa mabilis at eksaktong mga sagot. Sumali sa aming interactive na platform ng tanong at sagot para sa mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

Find the equation, in standard form, of the circle being described in each item

22. center (-6, -3), through (-10, 3)


Sagot :

1. Identify the center of the circle: The center is given as (-6, -3), so let the center be denoted as (h, k).

2. Determine the radius: The radius (r) is the distance from the center to the given point, which in this case is (-10, 3). We use the distance formula to calculate (r):

[tex]r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]

Substituting the provided points:

[tex]{r = \sqrt{(-10 - (-6))^2 + (3 - (-3))^2} = \sqrt{(-10 + 6)^2 + (3 + 3)^2} = \sqrt{(-4)^2 + (6)^2} = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13}}[/tex]

3. Write the equation of the circle in standard form: The equation of a circle with center (h, k) and radius (r) is given by:

[tex](x - h)^2 + (y - k)^2 = r^2[/tex]

Substitute

[tex] \(h = -6\), \(k = -3\), and \: \(r = 2\sqrt{13}\):[/tex]

[tex](x + 6)^2 + (y + 3)^2 = (2\sqrt{13})^2[/tex]

Simplify (r²):

[tex](2\sqrt{13})^2 = 4 \times 13 = 52[/tex]

The equation of the circle in standard form is:

(x + 6)² + (y + 3)² = 52