Answered

IDNStudy.com, kung saan ang mga eksperto ay sumasagot sa iyong mga tanong. Alamin ang mga maaasahang sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

Find the equation, in standard form, of the circle being described in each item

22. center (-6, -3), through (-10, 3)


Sagot :

1. Identify the center of the circle: The center is given as (-6, -3), so let the center be denoted as (h, k).

2. Determine the radius: The radius (r) is the distance from the center to the given point, which in this case is (-10, 3). We use the distance formula to calculate (r):

[tex]r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]

Substituting the provided points:

[tex]{r = \sqrt{(-10 - (-6))^2 + (3 - (-3))^2} = \sqrt{(-10 + 6)^2 + (3 + 3)^2} = \sqrt{(-4)^2 + (6)^2} = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13}}[/tex]

3. Write the equation of the circle in standard form: The equation of a circle with center (h, k) and radius (r) is given by:

[tex](x - h)^2 + (y - k)^2 = r^2[/tex]

Substitute

[tex] \(h = -6\), \(k = -3\), and \: \(r = 2\sqrt{13}\):[/tex]

[tex](x + 6)^2 + (y + 3)^2 = (2\sqrt{13})^2[/tex]

Simplify (r²):

[tex](2\sqrt{13})^2 = 4 \times 13 = 52[/tex]

The equation of the circle in standard form is:

(x + 6)² + (y + 3)² = 52