IDNStudy.com, ang iyong mapagkukunan para sa maaasahan at pangkomunidad na mga sagot. Tuklasin ang malalim na sagot sa iyong mga tanong mula sa aming komunidad ng mga bihasang propesyonal.
Sagot :
Step-by-step explanation:
To solve the quadratic equation \( x^2 + 9x + 18 = 0 \) by completing the square, follow these steps:
1. **Write down the equation:** \( x^2 + 9x + 18 = 0 \).
2. **Isolate the constant term:** Move the constant term (18) to the right side of the equation:
\[ x^2 + 9x = -18 \].
3. **Prepare to complete the square:** Take half the coefficient of \( x \) (which is 9), square it, and add/subtract it inside the equation. Half of 9 is \( \frac{9}{2} = 4.5 \), and squaring it gives \( \left(\frac{9}{2}\right)^2 = \frac{81}{4} \).
4. **Complete the square:** Add and subtract \( \frac{81}{4} \) inside the equation:
\[ x^2 + 9x + \frac{81}{4} = -18 + \frac{81}{4} \].
5. **Simplify the right-hand side:** Calculate \( -18 + \frac{81}{4} \):
\[ -18 = -\frac{72}{4} \], so \( -18 + \frac{81}{4} = -\frac{72}{4} + \frac{81}{4} = \frac{9}{4} \).
6. **Write it as a perfect square:** The left-hand side can be written as a perfect square:
\[ \left( x + \frac{9}{2} \right)^2 = \frac{9}{4} \].
7. **Solve for \( x \):** Take the square root of both sides:
\[ x + \frac{9}{2} = \pm \frac{3}{2} \].
8. **Solve for \( x \):** Solve for \( x \) by subtracting \( \frac{9}{2} \) from both sides:
\[ x = -\frac{9}{2} \pm \frac{3}{2} \].
9. **Find the solutions:** Simplify the solutions:
\[ x = -\frac{9}{2} + \frac{3}{2} = -3, \]
\[ x = -\frac{9}{2} - \frac{3}{2} = -6. \]
Therefore, the solutions to the quadratic equation \( x^2 + 9x + 18 = 0 \) are \( \boxed{-3 \text{ and } -6} \).
Maraming salamat sa iyong pakikilahok. Huwag kalimutang bumalik at magtanong ng mga bagong bagay. Ang iyong kaalaman ay mahalaga sa ating komunidad. Sa IDNStudy.com, kami ay nangako na magbigay ng pinakamahusay na mga sagot. Salamat at sa muling pagkikita.