Makahanap ng mabilis at maaasahang mga solusyon sa iyong mga problema sa IDNStudy.com. Ang aming platform ng tanong at sagot ay idinisenyo upang magbigay ng mabilis at eksaktong sagot sa lahat ng iyong mga tanong.

A die is rolled once. Find the probability that
a. the number is even or a multiple of 3
b. the number is a multiple of 2 or multiple of 3
c. the number is an odd number or a multiple of 2


Sagot :

Answer:

c

Step-by-step explanation:

because we have already learned that lesson and that is the answer

I hope I can help you

Answer:

Basic Setup

A die has 6 faces, numbered 1 through 6. The sample space \( S \) when a die is rolled is:

[tex][ S = \{ 1, 2, 3, 4, 5, 6 \} \][/tex]

Part (a): Probability that the number is even or a multiple of 3

Define the events:

- ( E ): The number is even.

- ( M ): The number is a multiple of 3.

First, identify the members of each set:

[tex]E = \{ 2, 4, 6 \}[/tex]

[tex]M = \{ 3, 6 \}[/tex]

The union of the two events

[tex] \( E \cup M \):[/tex]

[tex]E \cup M = \{ 2, 3, 4, 6 \}[/tex]

[tex]{\[ P(E \cup M) = P(E) + P(M) - P(E \cap M) \]}[/tex]

Calculate individual probabilities:

[tex]P(E) = \frac{|E|}{|S|} = \frac{3}{6} = \frac{1}{2}[/tex]

[tex]P(M) = \frac{|M|}{|S|} = \frac{2}{6} = \frac{1}{3}[/tex]

[tex]E \cap M = \{ 6 \} \Rightarrow P(E \cap M) = \frac{1}{6}[/tex]

Thus,

[tex]{P(E \cup M) = \frac{1}{2} + \frac{1}{3} - \frac{1}{6} = \frac{3}{6} + \frac{2}{6} - \frac{1}{6} = \frac{4}{6} = \frac{2}{3}}[/tex]

Part (b): Probability that the number is a multiple of 2 or multiple of 3

Define the events:

- ( A ): The number is a multiple of 2.

- ( B ): The number is a multiple of 3.

Identify the members of each set:

[tex]A = \{ 2, 4, 6 \}[/tex]

[tex]B = \{ 3, 6 \}[/tex]

The union of the two events

[tex]( A \cup B \):[/tex]

[tex]A \cup B = \{ 2, 3, 4, 6 \}[/tex]

The probability of the union:

[tex]{P(A \cup B) = P(A) + P(B) - P(A \cap B)}[/tex]

Calculate individual probabilities:

[tex]P(A) = \frac{|A|}{|S|} = \frac{3}{6} = \frac{1}{2}[/tex]

[tex]P(B) = \frac{|B|}{|S|} = \frac{2}{6} = \frac{1}{3}[/tex]

[tex]A \cap B = \{ 6 \} \Rightarrow P(A \cap B) = \frac{1}{6}[/tex]

Thus,

[tex]{P(A \cup B) = \frac{1}{2} + \frac{1}{3} - \frac{1}{6} = \frac{3}{6} + \frac{2}{6} - \frac{1}{6} = \frac{4}{6} = \frac{2}{3}}[/tex]

Part (c): Probability that the number is an odd number or a multiple of 2

Define the events:

- ( O ): The number is odd.

- ( D ): The number is a multiple of 2 (i.e., the number is even).

Identify the members of each set:

[tex] O = \{ 1, 3, 5 \}[/tex]

[tex]D = \{ 2, 4, 6 \}[/tex]

The union of the two events

[tex]\( O \cup D \):[/tex]

[tex]O \cup D = \{ 1, 2, 3, 4, 5, 6 \}[/tex]

The probability of the union:

[tex]{P(O \cup D) = P(O) + P(D) - P(O \cap D)}[/tex]

Calculate individual probabilities:

[tex]P(O) = \frac{|O|}{|S|} = \frac{3}{6} = \frac{1}{2}[/tex]

[tex]P(D) = \frac{|D|}{|S|} = \frac{3}{6} = \frac{1}{2}[/tex]

[tex]\[ O \cap D[/tex]