Makakuha ng detalyadong mga sagot sa iyong mga tanong gamit ang IDNStudy.com. Makakuha ng mga sagot sa iyong mga tanong mula sa aming mga eksperto, handang magbigay ng mabilis at tiyak na solusyon.
【Explanation】:
1. The equation \(x^2 = -31\) has no real solutions since the square of a real number cannot be negative. However, it does have complex solutions, which are ± (i sqrt(31)).
2. For the equation \((x-6)^2-7=0\), by rearranging and taking the square root, we get two solutions: \(x = 6 - \sqrt{7}\) and \(x = 6 + \sqrt{7}\).
3. The equation \(5x^2-1=4\) can be rearranged to \(5x^2 = 5\), which gives \(x^2 = 1\). Taking the square root, we get two solutions: \(x = 1\) and \(x = -1\).
4. For the equation \(36=x^2-4\), rearranging gives \(x^2 = 40\). Taking the square root, we get two solutions: \(x = 2 \sqrt{10}\) and \(x = -2 \sqrt{10}\).
5. The equation \((2x+1)^2=121\) can be simplified to \((2x+1)^2 = 11^2\). Taking the square root, we get two solutions: \(x = 5\) and \(x = -6\).