IDNStudy.com, ang iyong destinasyon para sa maaasahan at pangkomunidad na mga sagot. Magtanong at makakuha ng detalyadong sagot mula sa aming komunidad ng mga eksperto na may kaalaman.
Sagot :
Answer:
20 liters
Step-by-step explanation:
[tex]\rm 0.7 x 50 = 0.5(50 + x)[/tex]
[tex]\rm 35 = 25 + 0.5x[/tex]
[tex]\rm 0.5x = 10[/tex]
[tex]\rm x = 20 \: liters[/tex]
Therefore, you'll need to add 20 liters of water to the 50 liters of 70% alcohol solution to get a final solution of 50% alcohol.
[tex] \underline{\underline{\large{\red{\mathcal{ ✒ GIVEN:}}}}} [/tex]
[tex]\bullet \: \: \rm{50 \: liters \: of \: 70 \%}[/tex]
[tex]\bullet \: \: \rm{Final \: solution = 50 \% \: alcohol}[/tex]
[tex] \underline{\underline{\large{\red{\mathcal{REQUIRED:}}}}} [/tex]
How many liters of water are needed to make the 50% alcohol solution?
[tex] \underline{\underline{\large{\red{\mathcal{SOLUTION:}}}}} [/tex]
First, calculate the amount of pure alcohol in the initial solution.
[tex]\tt{50 \times 0.70 = 35 \: liters}[/tex]
Let [tex]\rm{x}[/tex] be the amount of water to be added. The total volume of the new solution must be 50 + x liters and 50% alcohol. So, we can set up the following equation.
[tex]\tt{35 =( 50 + x) \times 0.50}[/tex]
Solving the equation for x:
[tex]\tt{35 = 25 + 0.50x}[/tex]
[tex]\tt{0.50x = 35 - 25}[/tex]
[tex]\tt{0.50x=10}[/tex]
[tex]\tt{x = \dfrac{10}{0.50} }[/tex]
[tex]\large{\tt{\purple{x=20 \: liters}}}[/tex]
Final Answer:
Therefore, 20 liters of water must be added to 50 liters of 70% alcohol to produce 50% alcohol solution.
Salamat sa iyong pagsali sa aming komunidad. Magpatuloy sa pagtatanong at pagsagot sa mga katanungan. Sama-sama tayong magtatayo ng isang lugar na puno ng kaalaman at pagtutulungan. Salamat sa pagbisita sa IDNStudy.com. Nandito kami upang magbigay ng malinaw at tumpak na mga sagot.