Magtanong at makakuha ng maliwanag na mga sagot sa IDNStudy.com. Hanapin ang mga solusyong kailangan mo nang mabilis at madali sa tulong ng aming mga eksperto.

How many liters of water must be added to 50 liters of 70% alcohol to produce a 50 alcohol?

Sagot :

Answer:

20 liters

Step-by-step explanation:

[tex]\rm 0.7 x 50 = 0.5(50 + x)[/tex]

[tex]\rm 35 = 25 + 0.5x[/tex]

[tex]\rm 0.5x = 10[/tex]

[tex]\rm x = 20 \: liters[/tex]

Therefore, you'll need to add 20 liters of water to the 50 liters of 70% alcohol solution to get a final solution of 50% alcohol.

[tex] \underline{\underline{\large{\red{\mathcal{ ✒ GIVEN:}}}}} [/tex]

[tex]\bullet \: \: \rm{50 \: liters \: of \: 70 \%}[/tex]

[tex]\bullet \: \: \rm{Final \: solution = 50 \% \: alcohol}[/tex]

[tex] \underline{\underline{\large{\red{\mathcal{REQUIRED:}}}}} [/tex]

How many liters of water are needed to make the 50% alcohol solution?

[tex] \underline{\underline{\large{\red{\mathcal{SOLUTION:}}}}} [/tex]

First, calculate the amount of pure alcohol in the initial solution.

[tex]\tt{50 \times 0.70 = 35 \: liters}[/tex]

Let [tex]\rm{x}[/tex] be the amount of water to be added. The total volume of the new solution must be 50 + x liters and 50% alcohol. So, we can set up the following equation.

[tex]\tt{35 =( 50 + x) \times 0.50}[/tex]

Solving the equation for x:

[tex]\tt{35 = 25 + 0.50x}[/tex]

[tex]\tt{0.50x = 35 - 25}[/tex]

[tex]\tt{0.50x=10}[/tex]

[tex]\tt{x = \dfrac{10}{0.50} }[/tex]

[tex]\large{\tt{\purple{x=20 \: liters}}}[/tex]

Final Answer:

Therefore, 20 liters of water must be added to 50 liters of 70% alcohol to produce 50% alcohol solution.