Magtanong at makakuha ng eksaktong mga sagot sa IDNStudy.com. Ang aming komunidad ay handang magbigay ng malalim at praktikal na mga solusyon sa lahat ng iyong mga katanungan.
Sagot :
Answer:
20 liters
Step-by-step explanation:
[tex]\rm 0.7 x 50 = 0.5(50 + x)[/tex]
[tex]\rm 35 = 25 + 0.5x[/tex]
[tex]\rm 0.5x = 10[/tex]
[tex]\rm x = 20 \: liters[/tex]
Therefore, you'll need to add 20 liters of water to the 50 liters of 70% alcohol solution to get a final solution of 50% alcohol.
[tex] \underline{\underline{\large{\red{\mathcal{ ✒ GIVEN:}}}}} [/tex]
[tex]\bullet \: \: \rm{50 \: liters \: of \: 70 \%}[/tex]
[tex]\bullet \: \: \rm{Final \: solution = 50 \% \: alcohol}[/tex]
[tex] \underline{\underline{\large{\red{\mathcal{REQUIRED:}}}}} [/tex]
How many liters of water are needed to make the 50% alcohol solution?
[tex] \underline{\underline{\large{\red{\mathcal{SOLUTION:}}}}} [/tex]
First, calculate the amount of pure alcohol in the initial solution.
[tex]\tt{50 \times 0.70 = 35 \: liters}[/tex]
Let [tex]\rm{x}[/tex] be the amount of water to be added. The total volume of the new solution must be 50 + x liters and 50% alcohol. So, we can set up the following equation.
[tex]\tt{35 =( 50 + x) \times 0.50}[/tex]
Solving the equation for x:
[tex]\tt{35 = 25 + 0.50x}[/tex]
[tex]\tt{0.50x = 35 - 25}[/tex]
[tex]\tt{0.50x=10}[/tex]
[tex]\tt{x = \dfrac{10}{0.50} }[/tex]
[tex]\large{\tt{\purple{x=20 \: liters}}}[/tex]
Final Answer:
Therefore, 20 liters of water must be added to 50 liters of 70% alcohol to produce 50% alcohol solution.
Maraming salamat sa iyong aktibong pakikilahok. Magpatuloy sa pagtatanong at pagbabahagi ng iyong mga ideya. Ang iyong kaalaman ay mahalaga sa ating komunidad. Ang IDNStudy.com ang iyong mapagkakatiwalaang mapagkukunan ng mga sagot. Salamat at bumalik ka ulit.