IDNStudy.com, ang iyong platform para sa mga sagot ng eksperto. Hanapin ang mga solusyong kailangan mo nang mabilis at tiyak sa tulong ng aming mga bihasang miyembro.
Sagot :
Answer:
20 liters
Step-by-step explanation:
[tex]\rm 0.7 x 50 = 0.5(50 + x)[/tex]
[tex]\rm 35 = 25 + 0.5x[/tex]
[tex]\rm 0.5x = 10[/tex]
[tex]\rm x = 20 \: liters[/tex]
Therefore, you'll need to add 20 liters of water to the 50 liters of 70% alcohol solution to get a final solution of 50% alcohol.
[tex] \underline{\underline{\large{\red{\mathcal{ ✒ GIVEN:}}}}} [/tex]
[tex]\bullet \: \: \rm{50 \: liters \: of \: 70 \%}[/tex]
[tex]\bullet \: \: \rm{Final \: solution = 50 \% \: alcohol}[/tex]
[tex] \underline{\underline{\large{\red{\mathcal{REQUIRED:}}}}} [/tex]
How many liters of water are needed to make the 50% alcohol solution?
[tex] \underline{\underline{\large{\red{\mathcal{SOLUTION:}}}}} [/tex]
First, calculate the amount of pure alcohol in the initial solution.
[tex]\tt{50 \times 0.70 = 35 \: liters}[/tex]
Let [tex]\rm{x}[/tex] be the amount of water to be added. The total volume of the new solution must be 50 + x liters and 50% alcohol. So, we can set up the following equation.
[tex]\tt{35 =( 50 + x) \times 0.50}[/tex]
Solving the equation for x:
[tex]\tt{35 = 25 + 0.50x}[/tex]
[tex]\tt{0.50x = 35 - 25}[/tex]
[tex]\tt{0.50x=10}[/tex]
[tex]\tt{x = \dfrac{10}{0.50} }[/tex]
[tex]\large{\tt{\purple{x=20 \: liters}}}[/tex]
Final Answer:
Therefore, 20 liters of water must be added to 50 liters of 70% alcohol to produce 50% alcohol solution.
Ang iyong presensya ay mahalaga sa amin. Patuloy na magbahagi ng iyong karanasan at kaalaman. Ang iyong ambag ay napakahalaga sa aming komunidad. Para sa mabilis at eksaktong mga solusyon, isipin ang IDNStudy.com. Salamat sa iyong pagbisita at sa muling pagkikita.