Sumali sa IDNStudy.com at tuklasin ang komunidad ng mga taong handang tumulong. Ang aming mga eksperto ay nagbibigay ng mabilis at eksaktong sagot upang tulungan kang maunawaan at malutas ang anumang problema.

Find the sum of the series: (1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots + \frac{1}{n^2})​

Sagot :

Answer:

To find the sum of the series

[tex]S_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots + \frac{1}{n^2},

[/tex]

we can express it as:

[tex]S_n = \sum_{k=1}^{n} \frac{1}{k^2}.[/tex]

This series is known as the partial sum of the Basel problem, which converges to a specific value as n approaches infinity. The exact value of the infinite series is given by:

[tex]\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.[/tex]

However, since we are interested in the finite sum S_n , we can compute it for specific values of n or use known approximations for larger n .

Step 1: Calculate for Small Values of n

Let's calculate S_n for small values of n :

[tex]- \text{For n = 1 :}[/tex]

[tex]S_1 = 1.[/tex]

[tex]- \text{For} \: n = 2 :[/tex]

[tex]S_2 = 1 + \frac{1}{2^2} = 1 + \frac{1}{4} = \frac{5}{4}.[/tex]

[tex]- \text{For} \: n = 3 :[/tex]

[tex]{S_3 = 1 + \frac{1}{2^2} + \frac{1}{3^2} = 1 + \frac{1}{4} + \frac{1}{9} = \frac{36}{36} + \frac{9}{36} + \frac{4}{36} = \frac{49}{36}.}[/tex]

[tex] \text{For} \: n = 4 :[/tex]

[tex]{S_4 = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} = \frac{49}{36} + \frac{1}{16} = \frac{49}{36} + \frac{9}{144} = \frac{196}{144} + \frac{9}{144} = \frac{205}{144}.}[/tex]

Step 2: General Formula for Large n

For large n , the sum S_n can be approximated using the known result:

[tex]S_n \approx \frac{\pi^2}{6} - \frac{1}{n}.[/tex]

Thus, the final answer for the sum of the series up to n is:

[tex]S_n = \sum_{k=1}^{n} \frac{1}{k^2}.[/tex]