Makahanap ng mabilis na mga solusyon sa iyong mga problema sa IDNStudy.com. Ang aming platform ay nagbibigay ng mga maaasahang sagot upang matulungan kang gumawa ng matalinong desisyon nang mabilis at madali.
Sagot :
Answer:
To find the sum of the series
[tex]S_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots + \frac{1}{n^2},
[/tex]
we can express it as:
[tex]S_n = \sum_{k=1}^{n} \frac{1}{k^2}.[/tex]
This series is known as the partial sum of the Basel problem, which converges to a specific value as n approaches infinity. The exact value of the infinite series is given by:
[tex]\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.[/tex]
However, since we are interested in the finite sum S_n , we can compute it for specific values of n or use known approximations for larger n .
Step 1: Calculate for Small Values of n
Let's calculate S_n for small values of n :
[tex]- \text{For n = 1 :}[/tex]
[tex]S_1 = 1.[/tex]
[tex]- \text{For} \: n = 2 :[/tex]
[tex]S_2 = 1 + \frac{1}{2^2} = 1 + \frac{1}{4} = \frac{5}{4}.[/tex]
[tex]- \text{For} \: n = 3 :[/tex]
[tex]{S_3 = 1 + \frac{1}{2^2} + \frac{1}{3^2} = 1 + \frac{1}{4} + \frac{1}{9} = \frac{36}{36} + \frac{9}{36} + \frac{4}{36} = \frac{49}{36}.}[/tex]
[tex] \text{For} \: n = 4 :[/tex]
[tex]{S_4 = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} = \frac{49}{36} + \frac{1}{16} = \frac{49}{36} + \frac{9}{144} = \frac{196}{144} + \frac{9}{144} = \frac{205}{144}.}[/tex]
Step 2: General Formula for Large n
For large n , the sum S_n can be approximated using the known result:
[tex]S_n \approx \frac{\pi^2}{6} - \frac{1}{n}.[/tex]
Thus, the final answer for the sum of the series up to n is:
[tex]S_n = \sum_{k=1}^{n} \frac{1}{k^2}.[/tex]
Salamat sa iyong presensya. Magpatuloy sa pagtatanong at pagbabahagi ng iyong nalalaman. Sama-sama tayong lumikha ng isang mas matibay na samahan. Sa IDNStudy.com, kami ay nangako na magbigay ng pinakamahusay na mga sagot. Salamat at sa muling pagkikita.