Suriin ang IDNStudy.com para sa mabilis na mga solusyon sa iyong mga problema. Makakuha ng hakbang-hakbang na mga gabay para sa lahat ng iyong teknikal na tanong mula sa mga miyembro ng aming komunidad.

Find the sum of the series: (1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots + \frac{1}{n^2})​

Sagot :

Answer:

To find the sum of the series

[tex]S_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots + \frac{1}{n^2},

[/tex]

we can express it as:

[tex]S_n = \sum_{k=1}^{n} \frac{1}{k^2}.[/tex]

This series is known as the partial sum of the Basel problem, which converges to a specific value as n approaches infinity. The exact value of the infinite series is given by:

[tex]\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}.[/tex]

However, since we are interested in the finite sum S_n , we can compute it for specific values of n or use known approximations for larger n .

Step 1: Calculate for Small Values of n

Let's calculate S_n for small values of n :

[tex]- \text{For n = 1 :}[/tex]

[tex]S_1 = 1.[/tex]

[tex]- \text{For} \: n = 2 :[/tex]

[tex]S_2 = 1 + \frac{1}{2^2} = 1 + \frac{1}{4} = \frac{5}{4}.[/tex]

[tex]- \text{For} \: n = 3 :[/tex]

[tex]{S_3 = 1 + \frac{1}{2^2} + \frac{1}{3^2} = 1 + \frac{1}{4} + \frac{1}{9} = \frac{36}{36} + \frac{9}{36} + \frac{4}{36} = \frac{49}{36}.}[/tex]

[tex] \text{For} \: n = 4 :[/tex]

[tex]{S_4 = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} = \frac{49}{36} + \frac{1}{16} = \frac{49}{36} + \frac{9}{144} = \frac{196}{144} + \frac{9}{144} = \frac{205}{144}.}[/tex]

Step 2: General Formula for Large n

For large n , the sum S_n can be approximated using the known result:

[tex]S_n \approx \frac{\pi^2}{6} - \frac{1}{n}.[/tex]

Thus, the final answer for the sum of the series up to n is:

[tex]S_n = \sum_{k=1}^{n} \frac{1}{k^2}.[/tex]