IDNStudy.com, ang iyong mapagkakatiwalaang mapagkukunan para sa maaasahang mga sagot. Magtanong at makatanggap ng eksaktong sagot mula sa aming mga bihasang miyembro ng komunidad.

solve the polynomial ('quadratic') equation -8+5x - ½x² = 0.​

Sagot :

Answer:

Step 1: Rearrange the Equation

First, let's multiply the entire equation by $-2$ to eliminate the fraction:

[tex]{-2(-8) + -2(5x) + -2\left(-\frac{1}{2}x^2\right) = 0}[/tex]

This simplifies to:

[tex]16 - 10x + x^2 = 0.[/tex]

Now, we can rewrite it in standard form:

[tex]x^2 - 10x + 16 = 0.[/tex]

Step 2: Identify Coefficients

Here, we have:

- a = 1

- b = -10

- c = 16

Step 3: Use the Quadratic Formula

The quadratic formula is given by:

[tex]x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.[/tex]

Step 4: Calculate the Discriminant

First, we calculate the discriminant

[tex]b^2 - 4ac[/tex]

[tex]{b^2 - 4ac = (-10)^2 - 4(1)(16) = 100 - 64 = 36.}[/tex]

Step 5: Substitute into the Quadratic Formula

Now, substitute a , b , and the discriminant into the quadratic formula:

[tex]x = \frac{-(-10) \pm \sqrt{36}}{2(1)} = \frac{10 \pm 6}{2}.[/tex]

Step 6: Calculate the Two Possible Solutions

Now we calculate the two possible values for x :

1.

[tex]x_1 = \frac{10 + 6}{2} = \frac{16}{2} = 8[/tex]

2.

[tex]x_2 = \frac{10 - 6}{2} = \frac{4}{2} = 2[/tex]

Conclusion

The solutions to the quadratic equation are

[tex] \text{ \boxed{x = 8} \quad \text{and} \quad \boxed{ x = 2}}[/tex]