Sumali sa IDNStudy.com at makakuha ng mabilis at maaasahang mga sagot. Alamin ang mga detalyadong sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

solve the polynomial ('quadratic') equation -8+5x - ½x² = 0.​

Sagot :

Answer:

Step 1: Rearrange the Equation

First, let's multiply the entire equation by $-2$ to eliminate the fraction:

[tex]{-2(-8) + -2(5x) + -2\left(-\frac{1}{2}x^2\right) = 0}[/tex]

This simplifies to:

[tex]16 - 10x + x^2 = 0.[/tex]

Now, we can rewrite it in standard form:

[tex]x^2 - 10x + 16 = 0.[/tex]

Step 2: Identify Coefficients

Here, we have:

- a = 1

- b = -10

- c = 16

Step 3: Use the Quadratic Formula

The quadratic formula is given by:

[tex]x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.[/tex]

Step 4: Calculate the Discriminant

First, we calculate the discriminant

[tex]b^2 - 4ac[/tex]

[tex]{b^2 - 4ac = (-10)^2 - 4(1)(16) = 100 - 64 = 36.}[/tex]

Step 5: Substitute into the Quadratic Formula

Now, substitute a , b , and the discriminant into the quadratic formula:

[tex]x = \frac{-(-10) \pm \sqrt{36}}{2(1)} = \frac{10 \pm 6}{2}.[/tex]

Step 6: Calculate the Two Possible Solutions

Now we calculate the two possible values for x :

1.

[tex]x_1 = \frac{10 + 6}{2} = \frac{16}{2} = 8[/tex]

2.

[tex]x_2 = \frac{10 - 6}{2} = \frac{4}{2} = 2[/tex]

Conclusion

The solutions to the quadratic equation are

[tex] \text{ \boxed{x = 8} \quad \text{and} \quad \boxed{ x = 2}}[/tex]