IDNStudy.com, ang iyong pangunahing mapagkukunan para sa mga sagot ng eksperto. Makakuha ng mga sagot sa iyong mga tanong mula sa aming mga eksperto, handang magbigay ng mabilis at tiyak na solusyon.

solve the polynomial ('quadratic') equation -8+5x - ½x² = 0.​

Sagot :

Answer:

Step 1: Rearrange the Equation

First, let's multiply the entire equation by $-2$ to eliminate the fraction:

[tex]{-2(-8) + -2(5x) + -2\left(-\frac{1}{2}x^2\right) = 0}[/tex]

This simplifies to:

[tex]16 - 10x + x^2 = 0.[/tex]

Now, we can rewrite it in standard form:

[tex]x^2 - 10x + 16 = 0.[/tex]

Step 2: Identify Coefficients

Here, we have:

- a = 1

- b = -10

- c = 16

Step 3: Use the Quadratic Formula

The quadratic formula is given by:

[tex]x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.[/tex]

Step 4: Calculate the Discriminant

First, we calculate the discriminant

[tex]b^2 - 4ac[/tex]

[tex]{b^2 - 4ac = (-10)^2 - 4(1)(16) = 100 - 64 = 36.}[/tex]

Step 5: Substitute into the Quadratic Formula

Now, substitute a , b , and the discriminant into the quadratic formula:

[tex]x = \frac{-(-10) \pm \sqrt{36}}{2(1)} = \frac{10 \pm 6}{2}.[/tex]

Step 6: Calculate the Two Possible Solutions

Now we calculate the two possible values for x :

1.

[tex]x_1 = \frac{10 + 6}{2} = \frac{16}{2} = 8[/tex]

2.

[tex]x_2 = \frac{10 - 6}{2} = \frac{4}{2} = 2[/tex]

Conclusion

The solutions to the quadratic equation are

[tex] \text{ \boxed{x = 8} \quad \text{and} \quad \boxed{ x = 2}}[/tex]