Sumali sa IDNStudy.com at tuklasin ang komunidad ng mga taong handang tumulong. Ang aming mga eksperto ay handang magbigay ng malalim na sagot at praktikal na solusyon sa lahat ng iyong mga tanong.
Answer:
Since ( y'' = 4 ), we integrate with respect to ( x ) to find( y' ):
[tex]y'' = 4 \implies y' = 4x + C_1[/tex]
Here, ( C_1 ) is the constant of integration.
2. Integrate again to find ( y ):
Now, integrate ( y' ) with respect to ( x ) to find ( y ):
[tex]{y' = 4x + C_1 \implies y = 2x^2 + C_1 x + C_2}[/tex]
Here, ( C_2) is another constant of integration.
3. Use the initial conditions to find the constants ( C_1 ) and ( C_2 ):
[tex]( y'(2) = -1 ):[/tex]
[tex]{y'(2) = 4(2) + C_1 = -1 \implies 8 + C_1 = -1 \implies C_1 = -9}
[/tex]
[tex]( y(2) = -1 ):[/tex]
[tex]{y(2) = 2(2)^2 + (-9)(2) + C_2 = -1 \implies 8 - 18 + C_2 = -1 \implies -10 + C_2 = -1 \implies C_2 = 9}[/tex]
[tex]y = 2x^2 - 9x + 9[/tex]
Thus, the solution to the initial value problem is:
[tex]y = 2x^2 - 9x + 9[/tex]