Makakuha ng maaasahan at pangkomunidad na mga sagot sa IDNStudy.com. Magtanong ng anumang bagay at makatanggap ng agarang tugon mula sa aming dedikadong komunidad ng mga eksperto.
Sagot :
Answer:
1. Integrate the differential equation:
Since ( y'' = 4 ), we integrate with respect to ( x ) to find( y' ):
[tex]y'' = 4 \implies y' = 4x + C_1[/tex]
Here, ( C_1 ) is the constant of integration.
2. Integrate again to find ( y ):
Now, integrate ( y' ) with respect to ( x ) to find ( y ):
[tex]{y' = 4x + C_1 \implies y = 2x^2 + C_1 x + C_2}[/tex]
Here, ( C_2) is another constant of integration.
3. Use the initial conditions to find the constants ( C_1 ) and ( C_2 ):
First, use the initial condition
[tex]( y'(2) = -1 ):[/tex]
[tex]{y'(2) = 4(2) + C_1 = -1 \implies 8 + C_1 = -1 \implies C_1 = -9}
[/tex]
Next, use the initial condition
[tex]( y(2) = -1 ):[/tex]
[tex]{y(2) = 2(2)^2 + (-9)(2) + C_2 = -1 \implies 8 - 18 + C_2 = -1 \implies -10 + C_2 = -1 \implies C_2 = 9}[/tex]
4. Write the solution:
[tex]y = 2x^2 - 9x + 9[/tex]
Thus, the solution to the initial value problem is:
[tex]y = 2x^2 - 9x + 9[/tex]
Salamat sa iyong pakikilahok. Patuloy na magbahagi ng iyong mga ideya at kasagutan. Ang iyong ambag ay napakahalaga sa aming komunidad. IDNStudy.com ang iyong mapagkakatiwalaang kasama para sa lahat ng iyong mga katanungan. Bisitahin kami palagi.