Answered

Sumali sa IDNStudy.com at tuklasin ang komunidad ng mga taong handang tumulong. Ang aming mga eksperto ay handang magbigay ng malalim na sagot at praktikal na solusyon sa lahat ng iyong mga tanong.

Solve the initial value problem '' = 4 ; 2
( )=− 1, ' 2 ( )=− 1


Sagot :

Answer:

1. Integrate the differential equation:

Since ( y'' = 4 ), we integrate with respect to ( x ) to find( y' ):

[tex]y'' = 4 \implies y' = 4x + C_1[/tex]

Here, ( C_1 ) is the constant of integration.

2. Integrate again to find ( y ):

Now, integrate ( y' ) with respect to ( x ) to find ( y ):

[tex]{y' = 4x + C_1 \implies y = 2x^2 + C_1 x + C_2}[/tex]

Here, ( C_2) is another constant of integration.

3. Use the initial conditions to find the constants ( C_1 ) and ( C_2 ):

First, use the initial condition

[tex]( y'(2) = -1 ):[/tex]

[tex]{y'(2) = 4(2) + C_1 = -1 \implies 8 + C_1 = -1 \implies C_1 = -9}

[/tex]

Next, use the initial condition

[tex]( y(2) = -1 ):[/tex]

[tex]{y(2) = 2(2)^2 + (-9)(2) + C_2 = -1 \implies 8 - 18 + C_2 = -1 \implies -10 + C_2 = -1 \implies C_2 = 9}[/tex]

4. Write the solution:

[tex]y = 2x^2 - 9x + 9[/tex]

Thus, the solution to the initial value problem is:

[tex]y = 2x^2 - 9x + 9[/tex]