Answered

Sumali sa IDNStudy.com at tuklasin ang komunidad ng mga taong handang tumulong. Sumali sa aming interactive na platform ng tanong at sagot para sa mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

Solve the initial value problem '' = 4 ; 2
( )=− 1, ' 2 ( )=− 1


Sagot :

Answer:

1. Integrate the differential equation:

Since ( y'' = 4 ), we integrate with respect to ( x ) to find( y' ):

[tex]y'' = 4 \implies y' = 4x + C_1[/tex]

Here, ( C_1 ) is the constant of integration.

2. Integrate again to find ( y ):

Now, integrate ( y' ) with respect to ( x ) to find ( y ):

[tex]{y' = 4x + C_1 \implies y = 2x^2 + C_1 x + C_2}[/tex]

Here, ( C_2) is another constant of integration.

3. Use the initial conditions to find the constants ( C_1 ) and ( C_2 ):

First, use the initial condition

[tex]( y'(2) = -1 ):[/tex]

[tex]{y'(2) = 4(2) + C_1 = -1 \implies 8 + C_1 = -1 \implies C_1 = -9}

[/tex]

Next, use the initial condition

[tex]( y(2) = -1 ):[/tex]

[tex]{y(2) = 2(2)^2 + (-9)(2) + C_2 = -1 \implies 8 - 18 + C_2 = -1 \implies -10 + C_2 = -1 \implies C_2 = 9}[/tex]

4. Write the solution:

[tex]y = 2x^2 - 9x + 9[/tex]

Thus, the solution to the initial value problem is:

[tex]y = 2x^2 - 9x + 9[/tex]