Answered

Makahanap ng eksaktong solusyon sa iyong mga problema sa IDNStudy.com. Alamin ang mga detalyadong sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

Solve the initial value problem '' = 4 ; 2
( )=− 1, ' 2 ( )=− 1


Sagot :

Answer:

1. Integrate the differential equation:

Since ( y'' = 4 ), we integrate with respect to ( x ) to find( y' ):

[tex]y'' = 4 \implies y' = 4x + C_1[/tex]

Here, ( C_1 ) is the constant of integration.

2. Integrate again to find ( y ):

Now, integrate ( y' ) with respect to ( x ) to find ( y ):

[tex]{y' = 4x + C_1 \implies y = 2x^2 + C_1 x + C_2}[/tex]

Here, ( C_2) is another constant of integration.

3. Use the initial conditions to find the constants ( C_1 ) and ( C_2 ):

First, use the initial condition

[tex]( y'(2) = -1 ):[/tex]

[tex]{y'(2) = 4(2) + C_1 = -1 \implies 8 + C_1 = -1 \implies C_1 = -9}

[/tex]

Next, use the initial condition

[tex]( y(2) = -1 ):[/tex]

[tex]{y(2) = 2(2)^2 + (-9)(2) + C_2 = -1 \implies 8 - 18 + C_2 = -1 \implies -10 + C_2 = -1 \implies C_2 = 9}[/tex]

4. Write the solution:

[tex]y = 2x^2 - 9x + 9[/tex]

Thus, the solution to the initial value problem is:

[tex]y = 2x^2 - 9x + 9[/tex]