Makakuha ng mga sagot sa iyong mga pinakamahahalagang tanong sa IDNStudy.com. Alamin ang mga detalyadong sagot mula sa mga bihasang miyembro ng aming komunidad na sumasaklaw sa iba't ibang paksa para sa lahat ng iyong pangangailangan.

Let f(x) = x² - 4x3 + 6x2 4x + 1. Prove that f (x) is always non-negative for all real numbers x.​

Sagot :

Step-by-step explanation:

[tex]f(x) = x^2 - 4x^3 + 6x^2 - 4x + 1[/tex]

Combine like terms:

[tex]f(x) = -4x^3 + 7x^2 - 4x + 1[/tex]

[tex]{f'(x) = \frac{d}{dx} (-4x^3 + 7x^2 - 4x + 1) }[/tex]

[tex]f'(x) = -12x^2 + 14x - 4[/tex]

Set the derivative to zero to find the critical points:

[tex]-12x^2 + 14x - 4 = 0[/tex]

[tex]( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \):[/tex]

[tex]x = \frac{-14 \pm \sqrt{14^2 - 4(-12)(-4)}}{2(-12)}[/tex]

[tex]x = \frac{-14 \pm \sqrt{196 - 192}}{-24}[/tex]

[tex]x = \frac{-14 \pm \sqrt{4}}{-24}[/tex]

[tex]x = \frac{-14 \pm 2}{-24}[/tex]

[tex]x = \frac{-12}{-24} = \frac{1}{2}[/tex]

[tex]x = \frac{-16}{-24} = \frac{2}{3}[/tex]

Evaluate ( f(x) ) at these critical points:

[tex]{f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - 4\left(\frac{1}{2}\right)^3 + 6\left(\frac{1}{2}\right)^2 - 4\left(\frac{1}{2}\right) + 1}[/tex]

[tex]= \frac{1}{4} - \frac{4}{8} + \frac{6}{4} - 2 + 1[/tex]

[tex]= \frac{1}{4} - \frac{1}{2} + \frac{3}{2} - 2 + 1[/tex]

[tex]= \frac{1}{4} - \frac{1}{2} + \frac{3}{2} - 2 + 1 [/tex]

[tex]= \frac{1}{4} - \frac{2}{4} + \frac{6}{4} - \frac{8}{4} + \frac{4}{4}[/tex]

[tex]= \frac{1 - 2 + 6 - 8 + 4}{4}[/tex]

[tex]= \frac{1}{4}[/tex]

[tex] \text{Similarly}, for \( x = \frac{2}{3} \):[/tex]

[tex]{f\left(\frac{2}{3}\right) = \left(\frac{2}{3}\right)^2 - 4\left(\frac{2}{3}\right)^3 + 6\left(\frac{2}{3}\right)^2 - 4\left(\frac{2}{3}\right) + 1}[/tex]

[tex]= \frac{4}{9} - 4\left(\frac{8}{27}\right) + 6\left(\frac{4}{9}\right) - \frac{8}{3} + 1[/tex]

[tex]= \frac{4}{9} - \frac{32}{27} + \frac{24}{9} - \frac{24}{9} + 1[/tex]

[tex]= \frac{4}{9} - \frac{32}{27} + \frac{24}{9} - \frac{24}{9} + 1[/tex]

[tex]= 1 - \frac{32}{27}[/tex]

[tex]= \frac{27}{27} - \frac{32}{27}[/tex]

[tex]= \frac{-5}{27}[/tex]