IDNStudy.com, kung saan ang kuryusidad ay nagtatagpo ng kalinawan. Makakuha ng impormasyon mula sa aming mga eksperto, na nagbibigay ng detalyadong sagot sa lahat ng iyong mga tanong.
Sagot :
Answer:
Problem 1:
Given:
[tex](a_1 = x ), ( d = 3x ), ( a_1 = 25 )[/tex]
[tex]x = 25[/tex]
The common difference ( d ) is:
[tex]d = 3x = 3 \times 25 = 75 [/tex]
First five terms of the sequence:
[tex]a_1 = 25[/tex]
[tex]a_2 = a_1 + d = 25 + 75 = 100[/tex]
[tex]a_3 = a_2 + d = 100 + 75 = 175[/tex]
[tex]a_4 = a_3 + d = 175 + 75 = 250[/tex]
[tex]a_5 = a_4 + d = 250 + 75 = 325[/tex]
[tex] \text{First five terms:} 25, 100, 175, 250, 325 [/tex]
Problem 2:
Given:
[tex] ( a_1 = x ), ( d = \frac{1}{2}x ), ( a_{11} = 30 )[/tex]
[tex] \text{Since} ( a_1 = x ),[/tex]
The ( n )-th term of an arithmetic sequence is given by:
[tex]a_n = a_1 + (n-1)d[/tex]
Substitute ( n = 11 ):
[tex]a_{11} = x + (11-1) \left( \frac{1}{2} x \right) = 30[/tex]
[tex]30 = x + 10 \left( \frac{1}{2} x \right)[/tex]
[tex]30 = x + 5x[/tex]
[tex]30 = 6x[/tex]
[tex]x = 5[/tex]
The common difference ( d ) is:
[tex]d = \frac{1}{2}x = \frac{1}{2} \times 5 = 2.5[/tex]
First five terms of the sequence:
[tex]a_1 = 5 [/tex]
[tex]a_2 = a_1 + d = 5 + 2.5 = 7.5[/tex]
[tex]a_3 = a_2 + d = 7.5 + 2.5 = 10[/tex]
[tex]a_4 = a_3 + d = 10 + 2.5 = 12.5[/tex]
[tex]a_5 = a_4 + d = 12.5 + 2.5 = 15[/tex]
First five terms: [ 5, 7.5, 10, 12.5, 15 ]
Problem 3:
Given:
[tex]( a_1 = x ), ( d = 8x ), ( a_7 = 10 )[/tex]
[tex]{ \text{We need to find ( x ) such that }( a_7 = 10 ).}[/tex]
The ( n )-th term of an arithmetic sequence is given by:
[tex]a_n = a_1 + (n-1)d[/tex]
Substitute ( n = 7 ):
[tex]a_7 = x + (7-1) \left( 8x \right) = 10[/tex]
[tex]10 = x + 6 \left( 8x \right)[/tex]
[tex]10 = x + 48x[/tex]
[tex]10 = 49x[/tex]
[tex]x = \frac{10}{49} [/tex]
The common difference ( d ) is:
[tex]d = 8x = 8 \left( \frac{10}{49} \right) = \frac{80}{49}[/tex]
First five terms of the sequence:
[tex]a_1 = \frac{10}{49}[/tex]
[tex]a_2 = a_1 + d = \frac{10}{49} + \frac{80}{49} = \frac{90}{49}[/tex]
[tex]a_3 = a_2 + d = \frac{90}{49} + \frac{80}{49} = \frac{170}{49}[/tex]
[tex]a_4 = a_3 + d = \frac{170}{49} + \frac{80}{49} = \frac{250}{49} [/tex]
[tex]a_5 = a_4 + d = \frac{250}{49} + \frac{80}{49} = \frac{330}{49}[/tex]
First five terms:
[tex]\frac{10}{49}, \frac{90}{49}, \frac{170}{49}, \frac{250}{49}, \frac{330}{49}[/tex]
Problem 4:
Given:
[tex]( a_1 = x ), ( d = x ), ( a_1 = 36 )[/tex]
The common difference ( d ) is:
[tex]d = x = 36[/tex]
First five terms of the sequence:
[tex]a_1 = 36[/tex]
[tex]a_2 = a_1 + d = 36 + 36 = 72
[/tex]
[tex]a_3 = a_2 + d = 72 + 36 = 108[/tex]
[tex]a_4 = a_3 + d = 108 + 36 = 144[/tex]
[tex]a_5 = a_4 + d = 144 + 36 = 180[/tex]
First five terms:
[tex] [ 36, 72, 108, 144, 180 ][/tex]
Problem 5:
Given:
[tex]{( a_1 = x ), ( d = -5x ), ( a_{12} = -11.5 )}[/tex]
[tex] {\text{We need to find ( x ) such that} ( a_{12} = -11.5 ).}[/tex]
The ( n )-th term of an arithmetic sequence is given by:
[tex]a_n = a_1 + (n-1)d [/tex]
Substitute ( n = 12 ):
[tex]{a_{12} = x + (12-1) \left( -5x \right) = -11.5}[/tex]
[tex]-11.5 = x - 55x[/tex]
[tex]-11.5 = -54x[/tex]
[tex]x = \frac{11.5}{54} \approx \frac{23}{108}[/tex]
The common difference ( d ) is:
[tex]d = -5x = -5 \left( \frac{23}{108} \right) = \frac{-115}{108} [/tex]
First five terms of the sequence:
[tex]a_1 = \frac{23}{108}[/tex]
[tex]{a_2 = a_1 + d = \frac{23}{108} + \frac{-115}{108} = \frac{23 - 115}{108} = \frac{-92}{108} = \frac{-46}{54}}[/tex]
[tex]{a_3 = a_2 + d = \frac{-46}{54} + \frac{-115}{108} = \frac{-92 - 115}{108} = \frac{-207}{108} = -1.9167}[/tex]
[tex]{a_4 = a_3 + d = -1.9167 + \frac{-115}{108} = -1.9167 - 1.0648 = -2.9815}[/tex]
[tex]{a_5 = a_4 + d = -2.9815 + \frac{-115}{108} = -2.9815 - 1.0648 = -4.0463}[/tex]
First five terms:
[tex] \frac{23}{108}, \frac{-46}{54}, -1.9167, -2.9815, -4.0463[/tex]
Pinahahalagahan namin ang bawat tanong at sagot na iyong ibinabahagi. Huwag kalimutang bumalik at magtanong ng mga bagong bagay. Ang iyong kaalaman ay mahalaga sa ating komunidad. Para sa mga de-kalidad na sagot, piliin ang IDNStudy.com. Salamat at bumalik ka ulit sa aming site.