Tuklasin ang maliwanag na mga sagot sa iyong mga tanong sa IDNStudy.com. Alamin ang mga maaasahang sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.
Sagot :
Answer:
Problem 1:
Given:
[tex](a_1 = x ), ( d = 3x ), ( a_1 = 25 )[/tex]
[tex]x = 25[/tex]
The common difference ( d ) is:
[tex]d = 3x = 3 \times 25 = 75 [/tex]
First five terms of the sequence:
[tex]a_1 = 25[/tex]
[tex]a_2 = a_1 + d = 25 + 75 = 100[/tex]
[tex]a_3 = a_2 + d = 100 + 75 = 175[/tex]
[tex]a_4 = a_3 + d = 175 + 75 = 250[/tex]
[tex]a_5 = a_4 + d = 250 + 75 = 325[/tex]
[tex] \text{First five terms:} 25, 100, 175, 250, 325 [/tex]
Problem 2:
Given:
[tex] ( a_1 = x ), ( d = \frac{1}{2}x ), ( a_{11} = 30 )[/tex]
[tex] \text{Since} ( a_1 = x ),[/tex]
The ( n )-th term of an arithmetic sequence is given by:
[tex]a_n = a_1 + (n-1)d[/tex]
Substitute ( n = 11 ):
[tex]a_{11} = x + (11-1) \left( \frac{1}{2} x \right) = 30[/tex]
[tex]30 = x + 10 \left( \frac{1}{2} x \right)[/tex]
[tex]30 = x + 5x[/tex]
[tex]30 = 6x[/tex]
[tex]x = 5[/tex]
The common difference ( d ) is:
[tex]d = \frac{1}{2}x = \frac{1}{2} \times 5 = 2.5[/tex]
First five terms of the sequence:
[tex]a_1 = 5 [/tex]
[tex]a_2 = a_1 + d = 5 + 2.5 = 7.5[/tex]
[tex]a_3 = a_2 + d = 7.5 + 2.5 = 10[/tex]
[tex]a_4 = a_3 + d = 10 + 2.5 = 12.5[/tex]
[tex]a_5 = a_4 + d = 12.5 + 2.5 = 15[/tex]
First five terms: [ 5, 7.5, 10, 12.5, 15 ]
Problem 3:
Given:
[tex]( a_1 = x ), ( d = 8x ), ( a_7 = 10 )[/tex]
[tex]{ \text{We need to find ( x ) such that }( a_7 = 10 ).}[/tex]
The ( n )-th term of an arithmetic sequence is given by:
[tex]a_n = a_1 + (n-1)d[/tex]
Substitute ( n = 7 ):
[tex]a_7 = x + (7-1) \left( 8x \right) = 10[/tex]
[tex]10 = x + 6 \left( 8x \right)[/tex]
[tex]10 = x + 48x[/tex]
[tex]10 = 49x[/tex]
[tex]x = \frac{10}{49} [/tex]
The common difference ( d ) is:
[tex]d = 8x = 8 \left( \frac{10}{49} \right) = \frac{80}{49}[/tex]
First five terms of the sequence:
[tex]a_1 = \frac{10}{49}[/tex]
[tex]a_2 = a_1 + d = \frac{10}{49} + \frac{80}{49} = \frac{90}{49}[/tex]
[tex]a_3 = a_2 + d = \frac{90}{49} + \frac{80}{49} = \frac{170}{49}[/tex]
[tex]a_4 = a_3 + d = \frac{170}{49} + \frac{80}{49} = \frac{250}{49} [/tex]
[tex]a_5 = a_4 + d = \frac{250}{49} + \frac{80}{49} = \frac{330}{49}[/tex]
First five terms:
[tex]\frac{10}{49}, \frac{90}{49}, \frac{170}{49}, \frac{250}{49}, \frac{330}{49}[/tex]
Problem 4:
Given:
[tex]( a_1 = x ), ( d = x ), ( a_1 = 36 )[/tex]
The common difference ( d ) is:
[tex]d = x = 36[/tex]
First five terms of the sequence:
[tex]a_1 = 36[/tex]
[tex]a_2 = a_1 + d = 36 + 36 = 72
[/tex]
[tex]a_3 = a_2 + d = 72 + 36 = 108[/tex]
[tex]a_4 = a_3 + d = 108 + 36 = 144[/tex]
[tex]a_5 = a_4 + d = 144 + 36 = 180[/tex]
First five terms:
[tex] [ 36, 72, 108, 144, 180 ][/tex]
Problem 5:
Given:
[tex]{( a_1 = x ), ( d = -5x ), ( a_{12} = -11.5 )}[/tex]
[tex] {\text{We need to find ( x ) such that} ( a_{12} = -11.5 ).}[/tex]
The ( n )-th term of an arithmetic sequence is given by:
[tex]a_n = a_1 + (n-1)d [/tex]
Substitute ( n = 12 ):
[tex]{a_{12} = x + (12-1) \left( -5x \right) = -11.5}[/tex]
[tex]-11.5 = x - 55x[/tex]
[tex]-11.5 = -54x[/tex]
[tex]x = \frac{11.5}{54} \approx \frac{23}{108}[/tex]
The common difference ( d ) is:
[tex]d = -5x = -5 \left( \frac{23}{108} \right) = \frac{-115}{108} [/tex]
First five terms of the sequence:
[tex]a_1 = \frac{23}{108}[/tex]
[tex]{a_2 = a_1 + d = \frac{23}{108} + \frac{-115}{108} = \frac{23 - 115}{108} = \frac{-92}{108} = \frac{-46}{54}}[/tex]
[tex]{a_3 = a_2 + d = \frac{-46}{54} + \frac{-115}{108} = \frac{-92 - 115}{108} = \frac{-207}{108} = -1.9167}[/tex]
[tex]{a_4 = a_3 + d = -1.9167 + \frac{-115}{108} = -1.9167 - 1.0648 = -2.9815}[/tex]
[tex]{a_5 = a_4 + d = -2.9815 + \frac{-115}{108} = -2.9815 - 1.0648 = -4.0463}[/tex]
First five terms:
[tex] \frac{23}{108}, \frac{-46}{54}, -1.9167, -2.9815, -4.0463[/tex]
Pinahahalagahan namin ang bawat tanong at sagot na iyong ibinabahagi. Patuloy na maging aktibo at magbahagi ng iyong karanasan. Sama-sama tayong magtatagumpay. Salamat sa pagbisita sa IDNStudy.com. Bumalik ka ulit para sa mga sagot sa iyong mga katanungan.