Makakuha ng maaasahan at pangkomunidad na mga sagot sa IDNStudy.com. Tuklasin ang mga kumpletong sagot sa iyong mga tanong mula sa aming komunidad ng mga eksperto.

B. Find the value of x; then write the first 5 terms of
the arithmetic sequence, given a₁ and d.
1) a₁ = x, d=3x, a₁ = 25
2) a₁ = x, d = ½ x, a₁₁ = 30
3) a
3
1=x, d=8x, a7=10
4) a₁ =x, d=x, a₁ = 36
5) a₁ =x, d = −5x, ag = -11.5
12


Sagot :

Answer:

Problem 1:

Given:

[tex](a_1 = x ), ( d = 3x ), ( a_1 = 25 )[/tex]

[tex]x = 25[/tex]

The common difference ( d ) is:

[tex]d = 3x = 3 \times 25 = 75 [/tex]

First five terms of the sequence:

[tex]a_1 = 25[/tex]

[tex]a_2 = a_1 + d = 25 + 75 = 100[/tex]

[tex]a_3 = a_2 + d = 100 + 75 = 175[/tex]

[tex]a_4 = a_3 + d = 175 + 75 = 250[/tex]

[tex]a_5 = a_4 + d = 250 + 75 = 325[/tex]

[tex] \text{First five terms:} 25, 100, 175, 250, 325 [/tex]

Problem 2:

Given:

[tex] ( a_1 = x ), ( d = \frac{1}{2}x ), ( a_{11} = 30 )[/tex]

[tex] \text{Since} ( a_1 = x ),[/tex]

The ( n )-th term of an arithmetic sequence is given by:

[tex]a_n = a_1 + (n-1)d[/tex]

Substitute ( n = 11 ):

[tex]a_{11} = x + (11-1) \left( \frac{1}{2} x \right) = 30[/tex]

[tex]30 = x + 10 \left( \frac{1}{2} x \right)[/tex]

[tex]30 = x + 5x[/tex]

[tex]30 = 6x[/tex]

[tex]x = 5[/tex]

The common difference ( d ) is:

[tex]d = \frac{1}{2}x = \frac{1}{2} \times 5 = 2.5[/tex]

First five terms of the sequence:

[tex]a_1 = 5 [/tex]

[tex]a_2 = a_1 + d = 5 + 2.5 = 7.5[/tex]

[tex]a_3 = a_2 + d = 7.5 + 2.5 = 10[/tex]

[tex]a_4 = a_3 + d = 10 + 2.5 = 12.5[/tex]

[tex]a_5 = a_4 + d = 12.5 + 2.5 = 15[/tex]

First five terms: [ 5, 7.5, 10, 12.5, 15 ]

Problem 3:

Given:

[tex]( a_1 = x ), ( d = 8x ), ( a_7 = 10 )[/tex]

[tex]{ \text{We need to find ( x ) such that }( a_7 = 10 ).}[/tex]

The ( n )-th term of an arithmetic sequence is given by:

[tex]a_n = a_1 + (n-1)d[/tex]

Substitute ( n = 7 ):

[tex]a_7 = x + (7-1) \left( 8x \right) = 10[/tex]

[tex]10 = x + 6 \left( 8x \right)[/tex]

[tex]10 = x + 48x[/tex]

[tex]10 = 49x[/tex]

[tex]x = \frac{10}{49} [/tex]

The common difference ( d ) is:

[tex]d = 8x = 8 \left( \frac{10}{49} \right) = \frac{80}{49}[/tex]

First five terms of the sequence:

[tex]a_1 = \frac{10}{49}[/tex]

[tex]a_2 = a_1 + d = \frac{10}{49} + \frac{80}{49} = \frac{90}{49}[/tex]

[tex]a_3 = a_2 + d = \frac{90}{49} + \frac{80}{49} = \frac{170}{49}[/tex]

[tex]a_4 = a_3 + d = \frac{170}{49} + \frac{80}{49} = \frac{250}{49} [/tex]

[tex]a_5 = a_4 + d = \frac{250}{49} + \frac{80}{49} = \frac{330}{49}[/tex]

First five terms:

[tex]\frac{10}{49}, \frac{90}{49}, \frac{170}{49}, \frac{250}{49}, \frac{330}{49}[/tex]

Problem 4:

Given:

[tex]( a_1 = x ), ( d = x ), ( a_1 = 36 )[/tex]

The common difference ( d ) is:

[tex]d = x = 36[/tex]

First five terms of the sequence:

[tex]a_1 = 36[/tex]

[tex]a_2 = a_1 + d = 36 + 36 = 72

[/tex]

[tex]a_3 = a_2 + d = 72 + 36 = 108[/tex]

[tex]a_4 = a_3 + d = 108 + 36 = 144[/tex]

[tex]a_5 = a_4 + d = 144 + 36 = 180[/tex]

First five terms:

[tex] [ 36, 72, 108, 144, 180 ][/tex]

Problem 5:

Given:

[tex]{( a_1 = x ), ( d = -5x ), ( a_{12} = -11.5 )}[/tex]

[tex] {\text{We need to find ( x ) such that} ( a_{12} = -11.5 ).}[/tex]

The ( n )-th term of an arithmetic sequence is given by:

[tex]a_n = a_1 + (n-1)d [/tex]

Substitute ( n = 12 ):

[tex]{a_{12} = x + (12-1) \left( -5x \right) = -11.5}[/tex]

[tex]-11.5 = x - 55x[/tex]

[tex]-11.5 = -54x[/tex]

[tex]x = \frac{11.5}{54} \approx \frac{23}{108}[/tex]

The common difference ( d ) is:

[tex]d = -5x = -5 \left( \frac{23}{108} \right) = \frac{-115}{108} [/tex]

First five terms of the sequence:

[tex]a_1 = \frac{23}{108}[/tex]

[tex]{a_2 = a_1 + d = \frac{23}{108} + \frac{-115}{108} = \frac{23 - 115}{108} = \frac{-92}{108} = \frac{-46}{54}}[/tex]

[tex]{a_3 = a_2 + d = \frac{-46}{54} + \frac{-115}{108} = \frac{-92 - 115}{108} = \frac{-207}{108} = -1.9167}[/tex]

[tex]{a_4 = a_3 + d = -1.9167 + \frac{-115}{108} = -1.9167 - 1.0648 = -2.9815}[/tex]

[tex]{a_5 = a_4 + d = -2.9815 + \frac{-115}{108} = -2.9815 - 1.0648 = -4.0463}[/tex]

First five terms:

[tex] \frac{23}{108}, \frac{-46}{54}, -1.9167, -2.9815, -4.0463[/tex]