Tuklasin ang maliwanag na mga sagot sa iyong mga tanong sa IDNStudy.com. Alamin ang mga maaasahang sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

B. Find the value of x; then write the first 5 terms of
the arithmetic sequence, given a₁ and d.
1) a₁ = x, d=3x, a₁ = 25
2) a₁ = x, d = ½ x, a₁₁ = 30
3) a
3
1=x, d=8x, a7=10
4) a₁ =x, d=x, a₁ = 36
5) a₁ =x, d = −5x, ag = -11.5
12


Sagot :

Answer:

Problem 1:

Given:

[tex](a_1 = x ), ( d = 3x ), ( a_1 = 25 )[/tex]

[tex]x = 25[/tex]

The common difference ( d ) is:

[tex]d = 3x = 3 \times 25 = 75 [/tex]

First five terms of the sequence:

[tex]a_1 = 25[/tex]

[tex]a_2 = a_1 + d = 25 + 75 = 100[/tex]

[tex]a_3 = a_2 + d = 100 + 75 = 175[/tex]

[tex]a_4 = a_3 + d = 175 + 75 = 250[/tex]

[tex]a_5 = a_4 + d = 250 + 75 = 325[/tex]

[tex] \text{First five terms:} 25, 100, 175, 250, 325 [/tex]

Problem 2:

Given:

[tex] ( a_1 = x ), ( d = \frac{1}{2}x ), ( a_{11} = 30 )[/tex]

[tex] \text{Since} ( a_1 = x ),[/tex]

The ( n )-th term of an arithmetic sequence is given by:

[tex]a_n = a_1 + (n-1)d[/tex]

Substitute ( n = 11 ):

[tex]a_{11} = x + (11-1) \left( \frac{1}{2} x \right) = 30[/tex]

[tex]30 = x + 10 \left( \frac{1}{2} x \right)[/tex]

[tex]30 = x + 5x[/tex]

[tex]30 = 6x[/tex]

[tex]x = 5[/tex]

The common difference ( d ) is:

[tex]d = \frac{1}{2}x = \frac{1}{2} \times 5 = 2.5[/tex]

First five terms of the sequence:

[tex]a_1 = 5 [/tex]

[tex]a_2 = a_1 + d = 5 + 2.5 = 7.5[/tex]

[tex]a_3 = a_2 + d = 7.5 + 2.5 = 10[/tex]

[tex]a_4 = a_3 + d = 10 + 2.5 = 12.5[/tex]

[tex]a_5 = a_4 + d = 12.5 + 2.5 = 15[/tex]

First five terms: [ 5, 7.5, 10, 12.5, 15 ]

Problem 3:

Given:

[tex]( a_1 = x ), ( d = 8x ), ( a_7 = 10 )[/tex]

[tex]{ \text{We need to find ( x ) such that }( a_7 = 10 ).}[/tex]

The ( n )-th term of an arithmetic sequence is given by:

[tex]a_n = a_1 + (n-1)d[/tex]

Substitute ( n = 7 ):

[tex]a_7 = x + (7-1) \left( 8x \right) = 10[/tex]

[tex]10 = x + 6 \left( 8x \right)[/tex]

[tex]10 = x + 48x[/tex]

[tex]10 = 49x[/tex]

[tex]x = \frac{10}{49} [/tex]

The common difference ( d ) is:

[tex]d = 8x = 8 \left( \frac{10}{49} \right) = \frac{80}{49}[/tex]

First five terms of the sequence:

[tex]a_1 = \frac{10}{49}[/tex]

[tex]a_2 = a_1 + d = \frac{10}{49} + \frac{80}{49} = \frac{90}{49}[/tex]

[tex]a_3 = a_2 + d = \frac{90}{49} + \frac{80}{49} = \frac{170}{49}[/tex]

[tex]a_4 = a_3 + d = \frac{170}{49} + \frac{80}{49} = \frac{250}{49} [/tex]

[tex]a_5 = a_4 + d = \frac{250}{49} + \frac{80}{49} = \frac{330}{49}[/tex]

First five terms:

[tex]\frac{10}{49}, \frac{90}{49}, \frac{170}{49}, \frac{250}{49}, \frac{330}{49}[/tex]

Problem 4:

Given:

[tex]( a_1 = x ), ( d = x ), ( a_1 = 36 )[/tex]

The common difference ( d ) is:

[tex]d = x = 36[/tex]

First five terms of the sequence:

[tex]a_1 = 36[/tex]

[tex]a_2 = a_1 + d = 36 + 36 = 72

[/tex]

[tex]a_3 = a_2 + d = 72 + 36 = 108[/tex]

[tex]a_4 = a_3 + d = 108 + 36 = 144[/tex]

[tex]a_5 = a_4 + d = 144 + 36 = 180[/tex]

First five terms:

[tex] [ 36, 72, 108, 144, 180 ][/tex]

Problem 5:

Given:

[tex]{( a_1 = x ), ( d = -5x ), ( a_{12} = -11.5 )}[/tex]

[tex] {\text{We need to find ( x ) such that} ( a_{12} = -11.5 ).}[/tex]

The ( n )-th term of an arithmetic sequence is given by:

[tex]a_n = a_1 + (n-1)d [/tex]

Substitute ( n = 12 ):

[tex]{a_{12} = x + (12-1) \left( -5x \right) = -11.5}[/tex]

[tex]-11.5 = x - 55x[/tex]

[tex]-11.5 = -54x[/tex]

[tex]x = \frac{11.5}{54} \approx \frac{23}{108}[/tex]

The common difference ( d ) is:

[tex]d = -5x = -5 \left( \frac{23}{108} \right) = \frac{-115}{108} [/tex]

First five terms of the sequence:

[tex]a_1 = \frac{23}{108}[/tex]

[tex]{a_2 = a_1 + d = \frac{23}{108} + \frac{-115}{108} = \frac{23 - 115}{108} = \frac{-92}{108} = \frac{-46}{54}}[/tex]

[tex]{a_3 = a_2 + d = \frac{-46}{54} + \frac{-115}{108} = \frac{-92 - 115}{108} = \frac{-207}{108} = -1.9167}[/tex]

[tex]{a_4 = a_3 + d = -1.9167 + \frac{-115}{108} = -1.9167 - 1.0648 = -2.9815}[/tex]

[tex]{a_5 = a_4 + d = -2.9815 + \frac{-115}{108} = -2.9815 - 1.0648 = -4.0463}[/tex]

First five terms:

[tex] \frac{23}{108}, \frac{-46}{54}, -1.9167, -2.9815, -4.0463[/tex]