Makakuha ng detalyadong mga sagot sa lahat ng iyong tanong sa IDNStudy.com. Makakuha ng hakbang-hakbang na mga gabay para sa lahat ng iyong teknikal na tanong mula sa mga miyembro ng aming komunidad na may kaalaman.
Sagot :
Answer:
Problem 1:
Given:
[tex](a_1 = x ), ( d = 3x ), ( a_1 = 25 )[/tex]
[tex]x = 25[/tex]
The common difference ( d ) is:
[tex]d = 3x = 3 \times 25 = 75 [/tex]
First five terms of the sequence:
[tex]a_1 = 25[/tex]
[tex]a_2 = a_1 + d = 25 + 75 = 100[/tex]
[tex]a_3 = a_2 + d = 100 + 75 = 175[/tex]
[tex]a_4 = a_3 + d = 175 + 75 = 250[/tex]
[tex]a_5 = a_4 + d = 250 + 75 = 325[/tex]
[tex] \text{First five terms:} 25, 100, 175, 250, 325 [/tex]
Problem 2:
Given:
[tex] ( a_1 = x ), ( d = \frac{1}{2}x ), ( a_{11} = 30 )[/tex]
[tex] \text{Since} ( a_1 = x ),[/tex]
The ( n )-th term of an arithmetic sequence is given by:
[tex]a_n = a_1 + (n-1)d[/tex]
Substitute ( n = 11 ):
[tex]a_{11} = x + (11-1) \left( \frac{1}{2} x \right) = 30[/tex]
[tex]30 = x + 10 \left( \frac{1}{2} x \right)[/tex]
[tex]30 = x + 5x[/tex]
[tex]30 = 6x[/tex]
[tex]x = 5[/tex]
The common difference ( d ) is:
[tex]d = \frac{1}{2}x = \frac{1}{2} \times 5 = 2.5[/tex]
First five terms of the sequence:
[tex]a_1 = 5 [/tex]
[tex]a_2 = a_1 + d = 5 + 2.5 = 7.5[/tex]
[tex]a_3 = a_2 + d = 7.5 + 2.5 = 10[/tex]
[tex]a_4 = a_3 + d = 10 + 2.5 = 12.5[/tex]
[tex]a_5 = a_4 + d = 12.5 + 2.5 = 15[/tex]
First five terms: [ 5, 7.5, 10, 12.5, 15 ]
Problem 3:
Given:
[tex]( a_1 = x ), ( d = 8x ), ( a_7 = 10 )[/tex]
[tex]{ \text{We need to find ( x ) such that }( a_7 = 10 ).}[/tex]
The ( n )-th term of an arithmetic sequence is given by:
[tex]a_n = a_1 + (n-1)d[/tex]
Substitute ( n = 7 ):
[tex]a_7 = x + (7-1) \left( 8x \right) = 10[/tex]
[tex]10 = x + 6 \left( 8x \right)[/tex]
[tex]10 = x + 48x[/tex]
[tex]10 = 49x[/tex]
[tex]x = \frac{10}{49} [/tex]
The common difference ( d ) is:
[tex]d = 8x = 8 \left( \frac{10}{49} \right) = \frac{80}{49}[/tex]
First five terms of the sequence:
[tex]a_1 = \frac{10}{49}[/tex]
[tex]a_2 = a_1 + d = \frac{10}{49} + \frac{80}{49} = \frac{90}{49}[/tex]
[tex]a_3 = a_2 + d = \frac{90}{49} + \frac{80}{49} = \frac{170}{49}[/tex]
[tex]a_4 = a_3 + d = \frac{170}{49} + \frac{80}{49} = \frac{250}{49} [/tex]
[tex]a_5 = a_4 + d = \frac{250}{49} + \frac{80}{49} = \frac{330}{49}[/tex]
First five terms:
[tex]\frac{10}{49}, \frac{90}{49}, \frac{170}{49}, \frac{250}{49}, \frac{330}{49}[/tex]
Problem 4:
Given:
[tex]( a_1 = x ), ( d = x ), ( a_1 = 36 )[/tex]
The common difference ( d ) is:
[tex]d = x = 36[/tex]
First five terms of the sequence:
[tex]a_1 = 36[/tex]
[tex]a_2 = a_1 + d = 36 + 36 = 72
[/tex]
[tex]a_3 = a_2 + d = 72 + 36 = 108[/tex]
[tex]a_4 = a_3 + d = 108 + 36 = 144[/tex]
[tex]a_5 = a_4 + d = 144 + 36 = 180[/tex]
First five terms:
[tex] [ 36, 72, 108, 144, 180 ][/tex]
Problem 5:
Given:
[tex]{( a_1 = x ), ( d = -5x ), ( a_{12} = -11.5 )}[/tex]
[tex] {\text{We need to find ( x ) such that} ( a_{12} = -11.5 ).}[/tex]
The ( n )-th term of an arithmetic sequence is given by:
[tex]a_n = a_1 + (n-1)d [/tex]
Substitute ( n = 12 ):
[tex]{a_{12} = x + (12-1) \left( -5x \right) = -11.5}[/tex]
[tex]-11.5 = x - 55x[/tex]
[tex]-11.5 = -54x[/tex]
[tex]x = \frac{11.5}{54} \approx \frac{23}{108}[/tex]
The common difference ( d ) is:
[tex]d = -5x = -5 \left( \frac{23}{108} \right) = \frac{-115}{108} [/tex]
First five terms of the sequence:
[tex]a_1 = \frac{23}{108}[/tex]
[tex]{a_2 = a_1 + d = \frac{23}{108} + \frac{-115}{108} = \frac{23 - 115}{108} = \frac{-92}{108} = \frac{-46}{54}}[/tex]
[tex]{a_3 = a_2 + d = \frac{-46}{54} + \frac{-115}{108} = \frac{-92 - 115}{108} = \frac{-207}{108} = -1.9167}[/tex]
[tex]{a_4 = a_3 + d = -1.9167 + \frac{-115}{108} = -1.9167 - 1.0648 = -2.9815}[/tex]
[tex]{a_5 = a_4 + d = -2.9815 + \frac{-115}{108} = -2.9815 - 1.0648 = -4.0463}[/tex]
First five terms:
[tex] \frac{23}{108}, \frac{-46}{54}, -1.9167, -2.9815, -4.0463[/tex]
Salamat sa iyong pakikilahok. Patuloy na magbahagi ng iyong mga ideya at kasagutan. Ang iyong ambag ay napakahalaga sa aming komunidad. Ang IDNStudy.com ay laging nandito upang tumulong sa iyo. Bumalik ka palagi para sa mga sagot sa iyong mga katanungan.