IDNStudy.com, ang iyong mapagkukunan para sa mabilis at maaasahang mga sagot. Sumali sa aming platform ng tanong at sagot upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.

At present Mary is four years older than Peter. Peter’s age is five – sixths of Mary’s age.
What are their ages?


Sagot :

Answer:

Peter is 20 years old and Mary is 24 years old

Step-by-step explanation:

1. Mary is four years older than Peter:

M = P + 4

2. Peter’s age is five-sixths of Mary’s age:

[tex]P = \frac{5}{6}M[/tex]

We can substitute the first equation into the second equation to find the values of ( P ) and ( M ):

[tex]{ \text{Substitute }( M = P + 4 ) \: into \: ( P = \frac{5}{6}M ):}[/tex]

[tex]P = \frac{5}{6}(P + 4)[/tex]

To solve for ( P ), first distribute :

[tex](\frac{5}{6})[/tex]

[tex]P = \frac{5}{6}P + \frac{5}{6} \cdot 4[/tex]

[tex]P = \frac{5}{6}P + \frac{20}{6}[/tex]

[tex]P = \frac{5}{6}P + \frac{10}{3}[/tex]

Next, subtract

[tex](\frac{5}{6}P)[/tex]

from both sides to isolate ( P ):

[tex]P - \frac{5}{6}P = \frac{10}{3}[/tex]

Combine the terms on the left side:

[tex]\frac{1}{6}P = \frac{10}{3}[/tex]

To solve for ( P ), multiply both sides by 6:

[tex]P = 6 \cdot \frac{10}{3}[/tex]

[tex]P = \boxed {20}[/tex]

Now that we know Peter's age (( P = 20 )), we can find Mary's age using ( M = P + 4 ):

[tex]M = 20 + 4[/tex]

[tex]M = \boxed {24}[/tex]