IDNStudy.com, ang iyong gabay para sa mga sagot ng komunidad at eksperto. Ang aming platform ay nagbibigay ng mga maaasahang sagot upang matulungan kang gumawa ng matalinong desisyon nang mabilis at madali.

The angle between the 2-m bar and the x-axis varies according to the equation = 0.3t3 - 1.6t + 3 where is in radians and t is in seconds. Which of the following most nearly gives the angular position of the bar when t = 2 s?
a. 126.05 b. 130.70 c. 112.15 d. 56.84​


Sagot :

Answer:

a. 126.05

Explanation:

Equation

[tex]\theta = 0.3t^3 - 1.6t + 3[/tex]

Step-by-Step Solution:

1. Substitute ( t = 2 ) into the equation:

[tex]\theta = 0.3(2)^3 - 1.6(2) + 3[/tex]

2. Calculate each term separately:

[tex]( (2)^3 = 8 )[/tex]

[tex]( 0.3 \times 8 = 2.4 )[/tex]

[tex]( 1.6 \times 2 = 3.2 )[/tex]

3. Combine the terms:

[tex]\theta = 2.4 - 3.2 + 3[/tex]

4. Perform the addition and subtraction:

[tex]{\theta = 2.4 - 3.2 + 3 = 2.4 - 3.2 + 3 = -0.8 + 3 = 2.2}

[/tex]

The angular position

[tex]{ (\theta) \text when ( t = 2 ) seconds is ( 2.2 ) radians.}[/tex]

Conversion to Degrees:

To convert the angle from radians to degrees, use the conversion factor

[tex]( 180^\circ / \pi ):[/tex]

[tex]\theta_{\text{degrees}} = 2.2 \times \left( \frac{180^\circ}{\pi} \right)[/tex]

[tex]using \ (\pi \approx 3.14159):[/tex]

[tex]{\theta_{\text{degrees}} = 2.2 \times \left( \frac{180^\circ}{3.14159} \right) \approx 2.2 \times 57.2958 \approx 126.05^\circ}[/tex]

Ang iyong kontribusyon ay napakahalaga sa amin. Huwag kalimutang bumalik upang magtanong at matuto ng mga bagong bagay. Sama-sama tayong magpapaunlad ng kaalaman para sa lahat. Para sa mabilis at eksaktong mga solusyon, isipin ang IDNStudy.com. Salamat sa iyong pagbisita at sa muling pagkikita.