Sumali sa IDNStudy.com at makakuha ng mga sagot sa iyong mga tanong. Tuklasin ang mga kumpletong sagot sa iyong mga tanong mula sa aming komunidad ng mga eksperto.

The angle between the 2-m bar and the x-axis varies according to the equation = 0.3t3 - 1.6t + 3 where is in radians and t is in seconds. Which of the following most nearly gives the angular position of the bar when t = 2 s?
a. 126.05 b. 130.70 c. 112.15 d. 56.84​


Sagot :

Answer:

a. 126.05

Explanation:

Equation

[tex]\theta = 0.3t^3 - 1.6t + 3[/tex]

Step-by-Step Solution:

1. Substitute ( t = 2 ) into the equation:

[tex]\theta = 0.3(2)^3 - 1.6(2) + 3[/tex]

2. Calculate each term separately:

[tex]( (2)^3 = 8 )[/tex]

[tex]( 0.3 \times 8 = 2.4 )[/tex]

[tex]( 1.6 \times 2 = 3.2 )[/tex]

3. Combine the terms:

[tex]\theta = 2.4 - 3.2 + 3[/tex]

4. Perform the addition and subtraction:

[tex]{\theta = 2.4 - 3.2 + 3 = 2.4 - 3.2 + 3 = -0.8 + 3 = 2.2}

[/tex]

The angular position

[tex]{ (\theta) \text when ( t = 2 ) seconds is ( 2.2 ) radians.}[/tex]

Conversion to Degrees:

To convert the angle from radians to degrees, use the conversion factor

[tex]( 180^\circ / \pi ):[/tex]

[tex]\theta_{\text{degrees}} = 2.2 \times \left( \frac{180^\circ}{\pi} \right)[/tex]

[tex]using \ (\pi \approx 3.14159):[/tex]

[tex]{\theta_{\text{degrees}} = 2.2 \times \left( \frac{180^\circ}{3.14159} \right) \approx 2.2 \times 57.2958 \approx 126.05^\circ}[/tex]