Suriin ang IDNStudy.com para sa mabilis at maaasahang mga solusyon. Alamin ang mga detalyadong sagot mula sa mga bihasang miyembro ng aming komunidad na sumasaklaw sa iba't ibang paksa para sa lahat ng iyong pangangailangan.

80°, ABC = 60°, D is a point in the shape, and DAB = 10°, DBA = 20°. Find the degree of ACD.

Sagot :

Answer:

Given:

[tex]( \angle BAC = 80^\circ )[/tex]

[tex]( \angle ABC = 60^\circ )[/tex]

[tex]( D ) \text{is a point such that:}[/tex]

[tex]( \angle DAB = 10^\circ )[/tex]

[tex]( \angle DBA = 20^\circ )[/tex]

[tex]2. \text{Determine} \: ( \angle ADB ):[/tex]

Since

[tex]{ ( \angle DAB + \angle DBA + \angle ADB = 180^\circ ) }[/tex]

(the sum of angles in triangle ( ABD )),

[tex]( 10^\circ + 20^\circ + \angle ADB = 180^\circ ),[/tex]

[tex]( \angle ADB = 180^\circ - 30^\circ = 150^\circ ).[/tex]

[tex]3. \text{Determine} ( \angle BCA ) in triangle ( ABC ):[/tex]

The sum of angles in triangle ( ABC ):

[tex]{( \angle BAC + \angle ABC + \angle BCA = 180^\circ ),}[/tex]

[tex]( 80^\circ + 60^\circ + \angle BCA = 180^\circ ),[/tex]

[tex]( \angle BCA = 180^\circ - 140^\circ = 40^\circ ).[/tex]

4. Determine ( angle ACD ):

Since ( D ) lies inside triangle ( ABC ), ( angle ACD ) is an exterior angle for triangle ( ADB ).

The exterior angle ( angle ACD ) is equal to the sum of the two non-adjacent interior angles of triangle ( ADB ):

[tex]( \angle ACD = \angle DAB + \angle DBA ),[/tex]

[tex]( \angle ACD = 10^\circ + 20^\circ = 30^\circ ).[/tex]

[tex]∴ \text {The degree of} ( \angle ACD ) \: is \: ( 30^\circ ).[/tex]