Suriin ang IDNStudy.com at makakuha ng mga sagot sa iyong mga tanong sa iba't ibang paksa. Magtanong at makakuha ng detalyadong sagot mula sa aming komunidad ng mga eksperto na may kaalaman.

80°, ABC = 60°, D is a point in the shape, and DAB = 10°, DBA = 20°. Find the degree of ACD.

Sagot :

Answer:

Given:

[tex]( \angle BAC = 80^\circ )[/tex]

[tex]( \angle ABC = 60^\circ )[/tex]

[tex]( D ) \text{is a point such that:}[/tex]

[tex]( \angle DAB = 10^\circ )[/tex]

[tex]( \angle DBA = 20^\circ )[/tex]

[tex]2. \text{Determine} \: ( \angle ADB ):[/tex]

Since

[tex]{ ( \angle DAB + \angle DBA + \angle ADB = 180^\circ ) }[/tex]

(the sum of angles in triangle ( ABD )),

[tex]( 10^\circ + 20^\circ + \angle ADB = 180^\circ ),[/tex]

[tex]( \angle ADB = 180^\circ - 30^\circ = 150^\circ ).[/tex]

[tex]3. \text{Determine} ( \angle BCA ) in triangle ( ABC ):[/tex]

The sum of angles in triangle ( ABC ):

[tex]{( \angle BAC + \angle ABC + \angle BCA = 180^\circ ),}[/tex]

[tex]( 80^\circ + 60^\circ + \angle BCA = 180^\circ ),[/tex]

[tex]( \angle BCA = 180^\circ - 140^\circ = 40^\circ ).[/tex]

4. Determine ( angle ACD ):

Since ( D ) lies inside triangle ( ABC ), ( angle ACD ) is an exterior angle for triangle ( ADB ).

The exterior angle ( angle ACD ) is equal to the sum of the two non-adjacent interior angles of triangle ( ADB ):

[tex]( \angle ACD = \angle DAB + \angle DBA ),[/tex]

[tex]( \angle ACD = 10^\circ + 20^\circ = 30^\circ ).[/tex]

[tex]∴ \text {The degree of} ( \angle ACD ) \: is \: ( 30^\circ ).[/tex]