Magtanong at makakuha ng mga sagot ng eksperto sa IDNStudy.com. Anuman ang kahirapan ng iyong mga tanong, ang aming komunidad ay may mga sagot na kailangan mo.

Generate an expression/rule for each given
sequence 3. 0.1, 0.11, 0.111, 0.1111, ...​


Sagot :

Answer:

Each term in the sequence adds another digit '1' to the previous term:

1. First term: ( 0.1 )

2. Second term: ( 0.11 )

3. Third term: ( 0.111 )

4. Fourth term: ( 0.1111 )

We can express each term as:

[tex]a_n = 0.\underbrace{111\ldots1}_{n \text{ ones}}[/tex]

To write this in a more mathematical form, we can use the fact that each term is a sum of fractions:

[tex]a_n = \sum_{k=1}^{n} \frac{1}{10^k}[/tex]

Alternatively, we can represent each term as a finite geometric series:

[tex]a_n = \frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \cdots + \frac{1}{10^n}[/tex]

This geometric series can be simplified using the formula for the sum of a geometric series:

[tex]a_n = \frac{1 - \left(\frac{1}{10}\right)^n}{10 - 1}[/tex]

Since ( 10 - 1 = 9 ):

[tex]a_n = \frac{1 - 10^{-n}}{9}[/tex]

So the rule for the nth term of the sequence is:

[tex]a_n = \frac{1 - 10^{-n}}{9}[/tex]