IDNStudy.com, ang platform na nag-uugnay ng mga tanong sa mga solusyon. Alamin ang mga detalyadong sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.
Step 1: List the given values.
Since the interest is compounded quarterly, the value of n is 4.
[tex]\begin{aligned} & A = 12,500 \\ & P = 9,000 \\ & n = 4 \\ & t = \text{5 years} \end{aligned}[/tex]
Step 2: Calculate the rate by using the formula for compound interest.
Note that we must multiply the calculated rate by 100 to convert it to percent because rate is usually expressed as percent.
[tex]\begin{aligned} A & = P \left(1 + \frac{r}{n} \right)^{nt} \\ 12,500 & = 9,000 \left(1 + \frac{r}{4} \right)^{4(5)} \\ 12,500 & = 9,000 \left(1 + \frac{r}{4} \right)^{20} \\ \frac{12,500}{9,000} & = \frac{9,000}{9,000} \left(1 + \frac{r}{4} \right)^{20} \\ 1.388889 & = \left(1 + \frac{r}{4} \right)^{20} \\ \sqrt[20]{1.388889} & = \sqrt[20]{\left(1 + \frac{r}{4} \right)^{20}} \\ 1.016561 & = 1 + \frac{r}{4} \\ \frac{r}{4} & = 1.016561 - 1 \\ \frac{r}{4} & = 0.016561 \\ r & = 4(0.016561) \\ r & = 0.066244 \\ r & = 0.066244 \times 100 \\ r & = 6.6244\% \\ & \approx \boxed{6.62\%} \end{aligned}[/tex]
Hence, the rate is 6.62%.