IDNStudy.com, ang iyong mapagkukunan para sa mga sagot ng eksperto at komunidad. Makakuha ng mga sagot sa iyong mga tanong mula sa aming mga eksperto, handang magbigay ng mabilis at tiyak na solusyon.
Given:
In a triangle with midpoints D and E, we know that DE is parallel to AC and DE is half the length of AC.
[tex]\textsf{a. Value of x} : \\ \begin{align*} DE &= \frac{1}{2} AC \\ 2x + 5 &= \frac{1}{2} (5x + 6) \\ 2(2x + 5) = 5x + 6 \\ 4x + 10 &= 5x + 6 \\ 4x + 10 - 5x &= 6 \\ -x + 10 &= 6 \\ -x &= -4 \\ x &=4 \end{align*}[/tex][tex]\textsf{b. Length of } DE: \: \\ \begin{align*}DE &= 2x + 5 \\DE &= 2(4) + 5 \\DE &= 8 + 5 \\DE &= 13\end{align*}
[/tex][tex]\[ \boxed{\color{purple} \therefore \ \text{a. } \ x = 4 \quad \quad \quad \\ \text{b. Length of DE } = 13 \quad \quad \quad \\ \text{c. Length of AC } = 26} \] [/tex]