IDNStudy.com, ang iyong platform ng sanggunian para sa pangkomunidad na mga sagot. Sumali sa aming platform upang makatanggap ng mabilis at eksaktong tugon mula sa mga propesyonal sa iba't ibang larangan.
Given:
In a triangle with midpoints D and E, we know that DE is parallel to AC and DE is half the length of AC.
[tex]\textsf{a. Value of x} : \\ \begin{align*} DE &= \frac{1}{2} AC \\ 2x + 5 &= \frac{1}{2} (5x + 6) \\ 2(2x + 5) = 5x + 6 \\ 4x + 10 &= 5x + 6 \\ 4x + 10 - 5x &= 6 \\ -x + 10 &= 6 \\ -x &= -4 \\ x &=4 \end{align*}[/tex][tex]\textsf{b. Length of } DE: \: \\ \begin{align*}DE &= 2x + 5 \\DE &= 2(4) + 5 \\DE &= 8 + 5 \\DE &= 13\end{align*}
[/tex][tex]\[ \boxed{\color{purple} \therefore \ \text{a. } \ x = 4 \quad \quad \quad \\ \text{b. Length of DE } = 13 \quad \quad \quad \\ \text{c. Length of AC } = 26} \] [/tex]