Answered

Makahanap ng mabilis na mga solusyon sa iyong mga problema sa IDNStudy.com. Hanapin ang impormasyon na kailangan mo nang mabilis at madali sa pamamagitan ng aming komprehensibo at eksaktong platform ng tanong at sagot.

hello help me with this tyy​

Hello Help Me With This Tyy class=

Sagot :

[tex] \boxed {\begin{array}{lclcl} \sf {First \: Eigth \: Term : } \\ \\ - 4, - 3, - 2, - 1, \:0,\: 1, \:2, \: \rm {and} \: 3\end{array}}[/tex]

Apply the general formula that has mentioned:

[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{\begin{array}{l} \sf \large{ an} = \frac{ \large n {}^{2} - 25}{ \large n + 5} \end{array}}[/tex]

1. First Term; n = 1

[tex] \sf \small {a_1 } \normalsize= \frac{n {}^{2} - 25}{n + 5} = \frac{1 {}^{2} - 25 }{1 + 5} = \frac{1 - 25}{6} = \frac{ - 24 \: \: }{6} = \small- 4[/tex]

2. Second Term; n = 2

[tex] \sf \small {a_2} = \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{2 {}^{2} - 25 }{2 + 5} = \frac{4 - 25}{7} = \frac{ - 21 \: \: }{7} = \small- 3[/tex]

3. Third Term; n = 3

[tex] \sf \small {a_3 }= \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{3 {}^{2} - 25 }{3 + 5} = \frac{9 - 25}{8} = \frac{ - 16 \: \: }{8} = \small- 2[/tex]

4. Fourth Term; n = 4

[tex] \sf \small {a_4} = \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{4 {}^{2} - 25 }{4 + 5} = \frac{16 - 25}{9} = \frac{ - 9 \: \: }{9} = \small-1[/tex]

5. Fifth Term; n = 5

[tex] \sf \small {a_5} = \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{5 {}^{2} - 25 }{5 + 5} = \frac{25 - 25}{10} = \frac{ 0 }{9} = \small0[/tex]

6. Sixth Term; n = 6

[tex] \sf \small {a_6} = \normalsize\frac{n {}^{2} - 25}{n + 5} = \frac{6 {}^{2} - 25 }{6 + 5} = \frac{36 - 25}{11} = \frac{ 11 }{11} = \small1[/tex]

7. Seventh Term; n = 7

[tex] \sf \small{ a_7 }= \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{7 {}^{2} - 25 }{7 + 5} = \frac{49 - 25}{12} = \frac{ 24}{12} = \small2[/tex]

8. Eigth Term; n = 8

[tex] \sf \small {a_8} = \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{8 {}^{2} - 25 }{8+ 5} = \frac{64 - 25}{13} = \frac{ 39}{13} = \small3[/tex]