Answered

Makahanap ng mga solusyon sa iyong mga problema gamit ang IDNStudy.com. Alamin ang mga maaasahang sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

hello help me with this tyy​

Hello Help Me With This Tyy class=

Sagot :

[tex] \boxed {\begin{array}{lclcl} \sf {First \: Eigth \: Term : } \\ \\ - 4, - 3, - 2, - 1, \:0,\: 1, \:2, \: \rm {and} \: 3\end{array}}[/tex]

Apply the general formula that has mentioned:

[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{\begin{array}{l} \sf \large{ an} = \frac{ \large n {}^{2} - 25}{ \large n + 5} \end{array}}[/tex]

1. First Term; n = 1

[tex] \sf \small {a_1 } \normalsize= \frac{n {}^{2} - 25}{n + 5} = \frac{1 {}^{2} - 25 }{1 + 5} = \frac{1 - 25}{6} = \frac{ - 24 \: \: }{6} = \small- 4[/tex]

2. Second Term; n = 2

[tex] \sf \small {a_2} = \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{2 {}^{2} - 25 }{2 + 5} = \frac{4 - 25}{7} = \frac{ - 21 \: \: }{7} = \small- 3[/tex]

3. Third Term; n = 3

[tex] \sf \small {a_3 }= \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{3 {}^{2} - 25 }{3 + 5} = \frac{9 - 25}{8} = \frac{ - 16 \: \: }{8} = \small- 2[/tex]

4. Fourth Term; n = 4

[tex] \sf \small {a_4} = \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{4 {}^{2} - 25 }{4 + 5} = \frac{16 - 25}{9} = \frac{ - 9 \: \: }{9} = \small-1[/tex]

5. Fifth Term; n = 5

[tex] \sf \small {a_5} = \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{5 {}^{2} - 25 }{5 + 5} = \frac{25 - 25}{10} = \frac{ 0 }{9} = \small0[/tex]

6. Sixth Term; n = 6

[tex] \sf \small {a_6} = \normalsize\frac{n {}^{2} - 25}{n + 5} = \frac{6 {}^{2} - 25 }{6 + 5} = \frac{36 - 25}{11} = \frac{ 11 }{11} = \small1[/tex]

7. Seventh Term; n = 7

[tex] \sf \small{ a_7 }= \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{7 {}^{2} - 25 }{7 + 5} = \frac{49 - 25}{12} = \frac{ 24}{12} = \small2[/tex]

8. Eigth Term; n = 8

[tex] \sf \small {a_8} = \normalsize \frac{n {}^{2} - 25}{n + 5} = \frac{8 {}^{2} - 25 }{8+ 5} = \frac{64 - 25}{13} = \frac{ 39}{13} = \small3[/tex]