Sumali sa IDNStudy.com at makuha ang mabilis at kaugnay na mga sagot. Alamin ang mga detalyadong sagot sa iyong mga tanong mula sa aming malawak na kaalaman sa mga eksperto.

logarithmic funton -inverse of exponential- (log) "logarithmic of a to the base .b eduls ×

ex. types of logarithmic
1 common logarithmic to the base 10
2 natural logarithmic
log 10× = log ×​


Sagot :

Answer:

### Properties of Logarithms

- Product Rule:

[tex]\log_b(x \cdot y) = \log_b(x) + \log_b(y)[/tex]

- Quotient Rule:

[tex]\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)[/tex]

- Power Rule:

[tex]\log_b(x^y) = y \cdot \log_b(x)[/tex]

### Examples

For a common logarithm:

[tex]\[

\log_{10}(100) = 2 \quad \text{because} \quad 10^2 = 100

\][/tex]

For a natural logarithm:

[tex]\ln(e) = 1 \quad \text{because} \quad e^1 = e[/tex]

### Conversion between Logarithms

To convert a logarithm from one base to another, you can use the change of base formula:

[tex]log_b(x) = \frac{\log_k(x)}{\log_k(b)}[/tex]

where ( k ) is any positive number different from 1.

### Example of Change of Base Formula

[tex]\log_2(8) = \frac{\log_{10}(8)}{\log_{10}(2)}[/tex]

### Solving a Logarithmic Equation

[tex]( \log_b(x) = y \):[/tex]

1. Rewrite the equation in its exponential form,

[tex]\( b^y = x \).[/tex]

2. Solve for ( x ).

[tex]For \:example, if \( \log_5(x) = 3 \):[/tex]

[tex]5^3 = x \implies x = 125[/tex]

### Summary Table

Type Of Logarithm Base Notation

Common Logarithm 10 Log_10(x)

Natural Logarithm e log_e(x) or

in(x)