IDNStudy.com, ang iyong gabay para sa malinaw at eksaktong mga sagot. Hanapin ang mga solusyong kailangan mo nang mabilis at madali sa tulong ng aming mga eksperto.

10. Heat is conducted through a material with a temperature gradient of -9000 °C/m. The conductivity of the material is 25 W/m.K. If this heat is convected to surrounding at 30 °C with a convection coefficient of 345 W/m²K. determine the surface temperature. ​

Sagot :

Answer:

The surface temperature \( T_s \) can be calculated using the heat fluxes from conduction and convection:

Given:

[tex] \text{Thermal conductivity } k = 25 \ \text{W/m·K}[/tex]

[tex]text \: {Temperature \: gradient } \frac{dT}{dx} = -9000 \ \text{°C/m}[/tex]

[tex]text{Convection coefficient } h = 345 \ \text{W/m}^2\text{K}[/tex]

[tex]text \: {Surrounding \: temperature } \: T_\infty = 30 \ \text{°C}[/tex]

1. Heat flux by conduction:

[tex]q = -k \frac{dT}{dx} = -25 \times (-9000) = 225000 \ \text{W/m}^2[/tex]

2. Surface temperature by convection:

[tex]T_s = \frac{q}{h} + T_\infty = \frac{225000}{345} + 30 \approx 652.17 + 30 = 682.17 \ \text{°C}[/tex]

Thus, the surface temperature ( T_s ) is approximately

[tex]\( 682.17 \ \text{°C} \).[/tex]