Tuklasin ang mundo ng kaalaman at mga sagot mula sa komunidad sa IDNStudy.com. Ang aming komunidad ay nagbibigay ng eksaktong sagot upang matulungan kang maunawaan at malutas ang anumang problema.
Sagot :
Answer:
### Step-by-Step Solution:
1. Identify the center coordinates ((h,k):
- Since the circle is tangent to ( x = 8 ) and ( x = 14 ), the horizontal distance from the center to these lines is the radius ( r ).
- Therefore, we can write:
[tex] \[
|h - 8| = r \quad \text{and} \quad |h - 14| = r
\][/tex]
- Because the circle is tangent to both lines, the distance between the lines must be twice the radius:
[tex] \[
14 - 8 = 2r \implies r = 3
\]
[/tex]
- Solving for ( h ), we have:
[tex] \[
h - 8 = 3 \implies h = 11
\][/tex]
2. identify the vertical coordinate ( k ):
- Since the circle is tangent to ( y = 3 ), the vertical distance from the center to this line is also the radius ( r ):
[tex] \[
k - 3 = r \implies k - 3 = 3 \implies k = 6
\][/tex]
3. Summarize the center and radius:
- The center is
[tex]\( (h, k) = (11, 6) \)[/tex]
- The radius is
[tex] \( r = 3 \)[/tex]
4. Write the equation of the circle:
Using the standard form
[tex]\((x-h)^2 + (y-k)^2 = r^2\), \: we \: get:[/tex]
[tex]\[
(x - 11)^2 + (y - 6)^2 = 3^2
\][/tex]
[tex] \[
(x - 11)^2 + (y - 6)^2 = 9
\][/tex]
Hence, the equation of the circle is:
[tex]\[
(x - 11)^2 + (y - 6)^2 = 9
\][/tex]
Salamat sa iyong kontribusyon. Patuloy na magbahagi ng iyong karanasan at kaalaman. Ang iyong ambag ay napakahalaga sa aming komunidad. Umaasa kami na natagpuan mo ang hinahanap mo sa IDNStudy.com. Bumalik ka para sa mas maraming solusyon!