IDNStudy.com, ang iyong gabay para sa maaasahan at mabilis na mga sagot. Hanapin ang impormasyon na kailangan mo nang mabilis at madali sa pamamagitan ng aming komprehensibo at eksaktong platform ng tanong at sagot.
Answer:
⚠️ please cannot copy like these!
< / p > < p >
________________________________
let's simplify this step-by-step.
[tex]\[
\lim_{{x \to \infty}} \frac{{3x^3 + 2x^2 + x + 1}}{{x^3 + 2x + 5}}
\][/tex]
### Step 1: Identify the Dominant Terms
[tex]- In \: the \: numerator: {\( 3x^3 \)}[/tex]
[tex]- In \: the \: denominator: {\( x^3 \)}[/tex]
### Step 2: Simplify by Dividing by the Highest Power of \( x \)
Divide each term by \( x^3 \):
[tex]\[
\frac{{3x^3/x^3 + 2x^2/x^3 + x/x^3 + 1/x^3}}{{x^3/x^3 + 2x/x^3 + 5/x^3}}
\][/tex]
Simplify:
[tex]\[
\frac{{3 + \frac{2}{x} + \frac{1}{x^2} + \frac{1}{x^3}}}{{1 + \frac{2}{x^2} + \frac{5}{x^3}}}
\][/tex]
### Step 3: Evaluate the Limit as
[tex]{\( x \to \infty \) As \\( x \) \ approaches \ infinity, \\(\frac{2}{x}\), \(\frac{1}{x^2}\), and \(\frac{1}{x^3}\) \all \approach \0:}[/tex]
[tex]\[
\lim_{{x \to \infty}} \frac{{3 + 0 + 0 + 0}}{{1 + 0 + 0}} = \frac{3}{1} = 3
\][/tex]
[tex] \: \[
\boxed{3}
\][/tex]