Makakuha ng eksaktong at maaasahang sagot sa lahat ng iyong katanungan sa IDNStudy.com. Tuklasin ang malawak na hanay ng mga paksa at makahanap ng maaasahang sagot mula sa mga bihasang miyembro ng aming komunidad.

Lim=03x3+2x2+x+1x3+2x+5

Sagot :

Answer:

⚠️ please cannot copy like these!

< / p > < p >

________________________________

let's simplify this step-by-step.

[tex]\[

\lim_{{x \to \infty}} \frac{{3x^3 + 2x^2 + x + 1}}{{x^3 + 2x + 5}}

\][/tex]

### Step 1: Identify the Dominant Terms

[tex]- In \: the \: numerator: {\( 3x^3 \)}[/tex]

[tex]- In \: the \: denominator: {\( x^3 \)}[/tex]

### Step 2: Simplify by Dividing by the Highest Power of \( x \)

Divide each term by \( x^3 \):

[tex]\[

\frac{{3x^3/x^3 + 2x^2/x^3 + x/x^3 + 1/x^3}}{{x^3/x^3 + 2x/x^3 + 5/x^3}}

\][/tex]

Simplify:

[tex]\[

\frac{{3 + \frac{2}{x} + \frac{1}{x^2} + \frac{1}{x^3}}}{{1 + \frac{2}{x^2} + \frac{5}{x^3}}}

\][/tex]

### Step 3: Evaluate the Limit as

[tex]{\( x \to \infty \) As \\( x \) \ approaches \ infinity, \\(\frac{2}{x}\), \(\frac{1}{x^2}\), and \(\frac{1}{x^3}\) \all \approach \0:}[/tex]

[tex]\[

\lim_{{x \to \infty}} \frac{{3 + 0 + 0 + 0}}{{1 + 0 + 0}} = \frac{3}{1} = 3

\][/tex]

So, the limit is:

[tex] \: \[

\boxed{3}

\][/tex]