Suriin ang malawak na saklaw ng mga paksa sa IDNStudy.com. Ang aming mga eksperto ay handang magbigay ng malalim na sagot at praktikal na solusyon sa lahat ng iyong mga tanong.
Sagot :
[tex] {⚠️ \: Don't \: Copy \: Like these < \ p >. < p > }[/tex]
______________________________________
### Step 1: Sum of Vertical Forces
[tex]\[
R_1 + R_2 + R_3 = 240 \text{ lb} + 960 \text{ lb}
\][/tex]
[tex]\[
R_1 + R_2 + R_3 = 1200 \text{ lb} \quad \text{(Equation 1)}
\][/tex]
### Step 2: Sum of Moments about \( R_2 \)
Taking moments about \( R_2 \):
[tex]\[
\sum M_{R_2} = 0 \implies R_1 \cdot 8 \text{ ft} - 240 \text{ lb} \cdot 9 \text{ ft} - 960 \text{ lb} \cdot (9 + 3) \text{ ft} + R_3 \cdot 12 \text{ ft} = 0
\]
[/tex]
Simplifying the distances for moments:
[tex]\[
R_1 \cdot 8 \text{ ft} - 240 \text{ lb} \cdot 9 \text{ ft} - 960 \text{ lb} \cdot 12 \text{ ft} + R_3 \cdot 12 \text{ ft} = 0
\][/tex]
[tex]\[
R_1 \cdot 8 - 240 \cdot 9 - 960 \cdot 12 + R_3 \cdot 12 = 0
\]
[/tex]
[tex]\[
8R_1 - 2160 - 11520 + 12R_3 = 0
\][/tex]
[tex]
\[
8R_1 + 12R_3 = 13680 \quad \text{(Equation 2)}
\][/tex]
### Step 3: Sum of Moments about \( R_3 \)
Taking moments about \( R_3 \):
[tex]\[
\sum M_{R_3} = 0 \implies R_1 \cdot 20 \text{ ft} - 240 \text{ lb} \cdot 21 \text{ ft} - 960 \text{ lb} \cdot 3 \text{ ft} + R_2 \cdot 12 \text{ ft} = 0
\][/tex]
Simplifying the distances for moments:
[tex]\[
R_1 \cdot 20 - 240 \cdot 21 - 960 \cdot 3 + R_2 \cdot 12 = 0
\][/tex]
[tex]\[
20R_1 - 5040 - 2880 + 12R_2 = 0
\]
[/tex]
[tex]\[
20R_1 + 12R_2 = 7920 \quad \text{(Equation 3)}
\][/tex]
### Step 4: Solving the Equations
We now have a system of three equations with three unknowns:
[tex]1. \( R_1 + R_2 + R_3 = 1200 \)
2. \( 8R_1 + 12R_3 = 13680 \)
3. \( 20R_1 + 12R_2 = 7920 \)[/tex]
Let's solve this system of equations.
[tex]From Equation 2:
\[
8R_1 + 12R_3 = 13680 \implies R_3 = \frac{13680 - 8R_1}{12}
\][/tex]
[tex]From Equation 3:
\[
20R_1 + 12R_2 = 7920 \implies R_2 = \frac{7920 - 20R_1}{12}
\][/tex]
Substitute \( R_3 \) and \( R_2 \) back into Equation 1:
[tex]\[
R_1 + \frac{7920 - 20R_1}{12} + \frac{13680 - 8R_1}{12} = 1200
\]
[/tex]
Simplifying the equation:
[tex]\[
R_1 + \frac{7920 - 20R_1 + 13680 - 8R_1}{12} = 1200
\][/tex]
[tex]\[
R_1 + \frac{21600 - 28R_1}{12} = 1200
\][/tex]
Multiply through by 12 to clear the denominator:
[tex]\[
12R_1 + 21600 - 28R_1 = 14400
\][/tex]
[tex]\[
-16R_1 = -7200
\][/tex]
[tex]\[
R_1 = 450 \text{ lb}
\][/tex]
Now, substitute \( R_1 = 450 \text{ lb} \) back into the equations for \( R_2 \) and \( R_3 \):
[tex]\[
R_2 = \frac{7920 - 20 \cdot 450}{12}
\][/tex]
[tex]\[
R_2 = \frac{7920 - 9000}{12} = \frac{-1080}{12} = -90 \text{ lb} \quad \text{(Negative value indicates a downward force)}
\][/tex]
[tex]\[
R_3 = \frac{13680 - 8 \cdot 450}{12}
\]
[/tex]
[tex]\[
R_3 = \frac{13680 - 3600}{12} = \frac{10080}{12} = 840 \text{ lb}
\]
[/tex]
### Summary of Reactions
[tex]
\[
R_1 = 450 \text{ lb}
\][/tex]
[tex]\[
R_2 = -90 \text{ lb} \quad \text{(Indicates downward force)}
\][/tex]
[tex]\[
R_3 = 840 \text{ lb}
\]
[/tex]
[tex]For \( F_{R_2} \):
\[
F_{R_2} = R_2 = -90 \text{ lb}
\][/tex]
The reactions are:
[tex]- \( R_1 = 450 \text{ lb} \)
- \( R_2 = -90 \text{ lb} \) (downward force)
- \( R_3 = 840 \text{ lb} \)
- \( F_{R_2} = -90 \text{ lb} \)
[/tex]
Ang iyong presensya ay mahalaga sa amin. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong lumikha ng isang komunidad ng karunungan at pagkatuto. May mga katanungan ka? Ang IDNStudy.com ang may sagot. Bisitahin kami palagi para sa pinakabagong impormasyon.